CONTENTS

Preface page xi

Acknowledgements xiii

CHAPTER 1

Introduction


CHAPTER 2

Contact Microradiography

2.1. Introduction, p. 19. 2.2. Absorption of X-rays in matter, p. 21. 2.2.1. Absorption coefficients, p. 22. 2.2.2. Fluorescence radiation, p. 25. 2.2.3. Absorption edges, p. 26. 2.3. Optimum conditions for microradiography, p. 27. 2.3.1. Wavelength and specimen thickness, p. 28. 2.3.2. Choice of characteristic, continuous or fluorescent radiation, p. 33. 2.4. Geometrical blurring of the micro-image, p. 34. 2.5. Photographic and optical requirements, p. 37. 2.5.1. High resolution emulsions, p. 37. 2.5.2. Optical enlarging system, p. 40. 2.6. Ultimate resolving-power of the contact method, p. 40. 2.6.1. Unsharpness in image formation, p. 41. 2.6.2. Image spread, p. 41. 2.6.3. Size and aggregation of photographic grains, p. 42. 2.6.4. Resolving-power of the enlarging system, p. 43. 2.6.5. Contrast requirements, p. 43. 2.6.6. Ultimate resolution, p. 43. 2.7. Associated techniques of microradiography, p. 44. 2.7.1. Stereomicroradiography, p. 44. 2.7.2. Microfluoroscopy, p. 45. 2.7.3. Electron microradiography, p. 45.

CHAPTER 3

Microscopy by Point Projection

3.1. Introduction, p. 48. 3.2. The geometry of projection, p. 50. 3.3. Fresnel diffraction, p. 54. 3.4. Experimental systems, p. 58. 3.4.1. Camera obscura, p. 58. 3.4.2. Point anode tube, p. 59. 3.4.3. Window target tube, p. 60.
CONTENTS

3.5. Electron optical limitations, p. 62. 3.5.1. Cathode emission, p. 62. 3.5.2. Lens aberrations, p. 63. 3.6. Target limitations, p. 66. 3.6.1. Production and absorption of X-rays, p. 66. 3.6.2. Thermal dissipation, p. 67. 3.6.3. Electron scattering, p. 68. 3.6.4. Choice of target material, p. 71. 3.7. Photographing the image, p. 72. 3.8. Comparison of the contact and projection methods, p. 74. 3.8.1. Resolution, p. 74. 3.8.2. Field of view, p. 74. 3.8.3. Exposure-time, p. 77. 3.8.4. Experimental convenience, p. 78. 3.9. Intermediate magnifications, p. 80. 3.9.1. Arbitrary magnification, p. 81. 3.9.2. The times-two method, p. 84.

CHAPTER 4

Reflexion X-Ray Microscopy: Mirror Systems

4.1. Total reflexion of X-rays, p. 87. 4.2. Dioptric focusing, p. 91. 4.3. Focusing by total reflexion, p. 94. 4.4. Aberrations of a cylindrical mirror of circular section, p. 98. 4.4.1. Spherical aberration, p. 100. 4.4.2. Coma, p. 102. 4.4.3. Obliquity of the field, p. 103. 4.4.4. Curvature of the field, p. 104. 4.5. Astigmatism and distortion, p. 105. 4.6. Compound systems of circular mirrors, p. 109. 4.7. Compound systems of figured mirrors, p. 111. 4.8. Practical design of the reflexion X-ray microscope, p. 114. 4.8.1. Experimental arrangements, p. 116. 4.9. Practical limitations, p. 118. 4.10. The ultimate limit set by diffraction, p. 120.

CHAPTER 5

Reflexion X-Ray Microscopy: Curved Crystals

5.1. Efficiency of Bragg reflexion, p. 124. 5.2. Focusing at glancing incidence, p. 126. 5.2.1. Crystals curved at right angles to the plane of incidence, p. 127. 5.3. Focusing at near normal incidence, p. 131. 5.4. Focusing by ring mirrors, p. 136.

CHAPTER 6

X-Ray Absorption Microanalysis

CONTENTS

CHAPTER 7

X-Ray Emission Microanalysis


CHAPTER 8

Production of X-Rays


CHAPTER 9

Specimen Preparation Techniques


CHAPTER 10

Techniques of Contact Microradiography

CONTENTS

CHAPTER II

Techniques of Projection Microscopy


CHAPTER 12

Applications of X-Ray Microscopy in Biology and Medicine


CHAPTER 13

Inorganic Applications of X-Ray Microscopy


CHAPTER 14

Microdiffraction

CONTENTS

CHAPTER 15
Some New Experimental Methods


COMMENTS ADDED IN PROOF
page 367

APPENDIX
Absorption and Emission Data


REFERENCES
page 380

INDEX
403

PLATES I–XXXII facing page 240