INDEX

Aberrations, electron lens, 63, 273, 276, 279
Aberrations of X-ray mirrors, 98–109, 120, 135
Absorption coefficient, 22, 140
linear, 22
mass, 23
values, 23, 154, 372–5
Absorption edge, 26, 142
fine structure, 26
magnitude, 26, 33, 177
wavelengths, 376–9
Alloys, light metal, 325
Angular distribution of X-rays, 232
Astigmatism
of electron lens, 63, 276
in X-ray image, 105
Berg–Barrett method, 16, 345
Beryllium, 260, 301, 348, 355
Biological applications, 14, 152, 155, 241, 306–21, 350
Blood circulation, 306, 311
Bone, 313, 314
marrow, 313
mineral content of, 159, 314, 315, 320
Botanical applications, 317
Bragg diffraction, 6, 16, 17, 123–6, 336, 346
Calcium determination, 180, 320, 334
Camera obscura, 45, 58
Camera, vacuum, 252, 261, 262, 362
Cancer
animal, 316
human, 316
plant, 318
Casting, 329
Characteristic radiation, 33, 187, 228, 315
Chromatic aberration
of crystal mirror, 129
of electron lens, 63, 285
Cine recording, 308
Coma, 102
Comparison of methods, 9, 74, 181, 196
Contact microradiography, 2, 19
apparatus for, 254
contrast, 21, 31, 43, 140, 171
image formation, 34, 81
intensity limitations, 38, 267
principles, 21
resolving power, 36, 40, 44, 74
technique, 78, 246, 254
Contamination of target, 303
Continuous spectrum, 233–8
Contrast, image, see Contact micro-
radiography
Contrast media, 244, 306–14, 317
Contrast, optimum, 32, 157, 243
Control equipment, 257, 260, 288
Counter, Geiger, 140, 156, 175
see Proportional
Curvature of field, 104
Darkfield imaging, 16
Defects, sample, 241, 250, 322
Dental applications, 314, 316, 320, 321
Depth of focus, 104, 293–5
Detectability, limit of, 150, 155, 158, 170, 193, 319
Diffraction (Abbe limit), 120
Diffraction microscopy, 17
Diffusion, 328
Distortion
in projection image, 53
in reflection image, 108
Dosage, 309, 310
Dry weight determination, 145, 319
Effective wavelength, 166–70
Efficiency of X-ray production, 226–32
Electron emission, 62, 212, 214
Electron gun, 62, 212, 270, 337
Electron lens, 273
electrostatic, 270, 284, 357
magnetic, 204, 279, 281
Electron microangiography, 45, 325, 335
Electron microscope, conversion to
X-ray microscope, 200, 304
Electron microscopy
of emulsion, 40
of plastic image, 365
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron range, 222</td>
</tr>
<tr>
<td>Electron scattering, 68, 359, 362</td>
</tr>
<tr>
<td>Emission lines, 187, 223, 228, 373-9</td>
</tr>
<tr>
<td>Emission microanalysis, 11, 183, 321, 334</td>
</tr>
<tr>
<td>accuracy, 188</td>
</tr>
<tr>
<td>corrections, 188</td>
</tr>
<tr>
<td>principle, 11, 183</td>
</tr>
<tr>
<td>Emulsion speed, 37, 77, 165</td>
</tr>
<tr>
<td>Errors, 149, 178</td>
</tr>
<tr>
<td>Escape peak of counter, 180</td>
</tr>
<tr>
<td>Eye, 314</td>
</tr>
<tr>
<td>Fibres, 332</td>
</tr>
<tr>
<td>Field emission, 215, 284</td>
</tr>
<tr>
<td>Field of view, 74, 104, 110, 191-2, 353</td>
</tr>
<tr>
<td>Filament brightness, 62, 214, 215</td>
</tr>
<tr>
<td>Filters, 236</td>
</tr>
<tr>
<td>Fixation, rate of, 244</td>
</tr>
<tr>
<td>Fluorescence analysis, see Microanalysis</td>
</tr>
<tr>
<td>Fluorescent yield, 25, 208, 258</td>
</tr>
<tr>
<td>Focusing</td>
</tr>
<tr>
<td>visual, 272, 292</td>
</tr>
<tr>
<td>indirect methods, 359, 362</td>
</tr>
<tr>
<td>Freeze-drying, 241</td>
</tr>
<tr>
<td>Fresnel diffraction, 18, 21, 41, 54-8, 76, 81, 85, 101, 120, 359, 361, 363</td>
</tr>
<tr>
<td>Gabor reconstruction, 18, 76</td>
</tr>
<tr>
<td>Geological applications, 333</td>
</tr>
<tr>
<td>Geometrical blurring, 21, 34, 41, 51, 53, 81</td>
</tr>
<tr>
<td>Glancing-angle, 39, 115</td>
</tr>
<tr>
<td>Grain boundaries, 326</td>
</tr>
<tr>
<td>Grain size, photographic, 37, 38, 42, 149, 163</td>
</tr>
<tr>
<td>Half-value layer, 24</td>
</tr>
<tr>
<td>Heat dissipation</td>
</tr>
<tr>
<td>in the specimen, 192, 353</td>
</tr>
<tr>
<td>in the target, 67, 217-22</td>
</tr>
<tr>
<td>Historadiography, 244</td>
</tr>
<tr>
<td>Image converter, 356</td>
</tr>
<tr>
<td>Image intensifier, 351, 354</td>
</tr>
<tr>
<td>Index of refraction for X-rays, 87-94</td>
</tr>
<tr>
<td>Injection, 244</td>
</tr>
<tr>
<td>Insects, 308</td>
</tr>
<tr>
<td>Iron, 322-4</td>
</tr>
<tr>
<td>cast, 323</td>
</tr>
<tr>
<td>Kidney, 312</td>
</tr>
<tr>
<td>stones, 313</td>
</tr>
<tr>
<td>Kinetic blurring, 21, 285</td>
</tr>
<tr>
<td>Kossel lines, 347</td>
</tr>
<tr>
<td>Lippmann emulsion, 37, 38, 149, 164</td>
</tr>
<tr>
<td>Living organisms, 249, 308</td>
</tr>
<tr>
<td>Lung, 313</td>
</tr>
<tr>
<td>Lymph, 307</td>
</tr>
<tr>
<td>Mass thickness</td>
</tr>
<tr>
<td>definition, 140</td>
</tr>
<tr>
<td>determination, 145</td>
</tr>
<tr>
<td>Medical applications, 306-17, 319-21</td>
</tr>
<tr>
<td>Metallurgical applications, 14, 205, 251, 322-39, 334</td>
</tr>
<tr>
<td>Metals, 322-31</td>
</tr>
<tr>
<td>deformation in, 327, 330, 348</td>
</tr>
<tr>
<td>diffusion in, 328</td>
</tr>
<tr>
<td>Microanalyser</td>
</tr>
<tr>
<td>scanning, 191, 202</td>
</tr>
<tr>
<td>static spot, 185, 197</td>
</tr>
<tr>
<td>Microanalysis</td>
</tr>
<tr>
<td>absorption, 139, 153, 170, 319</td>
</tr>
<tr>
<td>fluorescence, 206-11</td>
</tr>
<tr>
<td>see Emission</td>
</tr>
<tr>
<td>Microangiography, 306</td>
</tr>
<tr>
<td>Microdensitometry, 147</td>
</tr>
<tr>
<td>Microdiffraction, 12, 336</td>
</tr>
<tr>
<td>cameras, 340, 342-50</td>
</tr>
<tr>
<td>Microfluorescopy, 45, 266</td>
</tr>
<tr>
<td>Microphotometry, 147, 269</td>
</tr>
<tr>
<td>Microradiography see Contact microradiography</td>
</tr>
<tr>
<td>Microscopy by reconstructed wavefronts, 18, 76</td>
</tr>
<tr>
<td>Mineralogical applications, 15, 199, 325, 333</td>
</tr>
<tr>
<td>Minimum detectable thickness, 150</td>
</tr>
<tr>
<td>Mirrors</td>
</tr>
<tr>
<td>aberrations of, 98-109, 135</td>
</tr>
<tr>
<td>corrected systems, 109-14</td>
</tr>
<tr>
<td>depth of focus, 104</td>
</tr>
<tr>
<td>imperfections of, 6, 119</td>
</tr>
<tr>
<td>X-ray focusing by, 94, 109, 135, 136</td>
</tr>
<tr>
<td>Monochromatisation, 138, 236-40, 259, 341</td>
</tr>
<tr>
<td>Moseley’s law, 188, 231</td>
</tr>
<tr>
<td>Muscle, 308</td>
</tr>
<tr>
<td>Obliquity of field, 103</td>
</tr>
<tr>
<td>Optical microscopy, 40, 43, 263</td>
</tr>
<tr>
<td>Optimum thickness, 28, 31, 150, 157, 208, 210, 243</td>
</tr>
<tr>
<td>Ores, 324, 325</td>
</tr>
<tr>
<td>Paper, 331</td>
</tr>
<tr>
<td>Penumbra width, 34, 50, 83</td>
</tr>
</tbody>
</table>
INDEX 405

Phase transformation, 330
Phosphorus determination, 320
Photo-electric absorption, 23
Photo-electric detection, 358
Photo-electrons, range of, 42
Photographic emulsion, 37, 72, 165, 263, 296
characteristics, 160–3
see Grain size
Pinhole camera, 48, 58
Planigraphy, 299
Plant histology, 318
Plastic deformation see Metals, deformation in
Plastic film detector, 365
Point anode, 59, 219
Point projection X-ray microscope, 7
camera obscura type, 48, 58
electrostatic type, 279, 284, 304
magnetic type, 60, 279, 281, 304
point anode type, 59, 219
Point projection X-ray microscopy, 48
apparatus for, 58, 281, 284, 288
image formation, 50, 81
intensity limitations, 62, 65
microanalysis with, 170
principles, 48
resolving-power, 53, 70, 74
spot size, 62–5, 273–6
technique, 78, 249, 270, 291, 300, 303
Precipitates in metals, 322–8
Proportional counter, 140, 151, 175, 193–6
flow type, 175
sealed off, 176
Recrystallization, 346, 348
Reference foils, 145–9
Reflexion coefficient, 89–92
integrated, 124–5
Reflexion of X-rays (Bragg), 132
see also Bragg diffraction
measurement, 125, 240
theory, 124
Reflexion of X-rays (Total), 87
measurement, 89–92, 239
theory, 88
Reflexion X-ray microscopy, 4, 87
aberrations, 98–109
apparatus for, 114, 127, 136
compound system, 109–14
intensity limitations, 116
principles, 94
resolving-power, 101, 111, 113, 121

technique, 114, 116, 118
with crystals, 6, 123, 126, 135
with mirrors, 5, 94
Refractive focusing of X-rays, 91, 93
Refractive index decrement, 83
Replicas, 252
Resolving-power, 13, 36, 40, 44, 53,
70, 74, 101, 111, 113, 121, 150
definition, 13
Rockey curve, 125, 130
Rowland circle, 96, 97, 156
Scanning methods, 9, 191, 202–6,
351–4
Scattering coefficient, 23
Scintillation counter, 202, 205, 351
Sectioning, 242, 251, 310–17
Selected area diffraction, 342, 349
Signal-noise limit, 191, 351, 354
Silica, 322, 324
Sintering, 324
Skin, 326, 317, 320
Solubility change, 365
Specimen preparation
biological, 241–50
metallurgical, 250–3
Specimen thickness, 27, 31, 41, 142,
144, 150, 157, 208, 210, 243, 251,
264, 298, 310, 314, 316
Spectral distribution of X-rays, 223,
226
Spectrometer, X-ray, 156, 173
Spherical aberration
electron lenses, 64, 278, 294
mirrors, 100, 110, 135
Stability, 63, 285
Stain historadiography, 244
Staining, 244, 315
Statistical error, in counters, 178, 190
Steel, 322
Stereoradiography, 12, 44, 264, 296
Stones, renal, see Kidney
Sulphur, determination, 320
Target, choice of, 66, 71, 221, 300
Teeth, 314, 316, 320, 321
Thomson–Whiddington law, 222
Times-two method, 84
Vacuum technique, 289
Water content determination, 152
Wavelengths
characteristic, 33, 187, 228, 315
INDEX

406

Wavelengths (cont.)
- distribution 223, 226
- optimum, 33, 140
- tables of, 376–9
- terminology, 10, 375, 377
- Welding, 329
- Window, 8, 49, 60, 66, 255, 258–63, 300, 355
- attenuation in, 67, 237, 259, 261, 301
- Wood, 318

X-ray diffraction, cameras, see Micro-
diffraction
X-ray microscope, commercial models, 300, 304
X-ray microscopy, 1
- advantages of, 1, 10
- comparison of methods, 9, 74, 181, 196

407

X-ray tube
- field emission type, 215
- fine focus, 213, 257–63, 337, 357
- for microdiffraction, 336, 340
- for reflexion microscopy, 116, 118, 136
- for soft X-rays, 254, 258–60
- for ultra-soft X-rays, 156, 260–3, 340
- gas type, 340
- sealed-off type, 254, 256, 260
- ultra-fine focus, 7, 49, 60, 172, 184, 197–211, 267, 274, 282–5, 304, 339, 351, 360, 362
X-rays
- dioptric focusing of, 91–4
- reflexion of, 87, 123
- theory of production, 66, 187, 212, 226