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Abstract

The graph removal lemma states that any graph on n vertices
with o(nh) copies of a fixed graph H on h vertices may be made H-
free by removing o(n2) edges. Despite its innocent appearance, this
lemma and its extensions have several important consequences in
number theory, discrete geometry, graph theory and computer sci-
ence. In this survey we discuss these lemmas, focusing in particular
on recent improvements to their quantitative aspects.

1 Introduction

The triangle removal lemma states that for every ε > 0 there exists
δ > 0 such that any graph on n vertices with at most δn3 triangles may be
made triangle-free by removing at most εn2 edges. This result, proved by
Ruzsa and Szemerédi [94] in 1976, was originally stated in rather different
language.

The original formulation was in terms of the (6, 3)-problem.3 This
asks for the maximum number of edges f (3)(n, 6, 3) in a 3-uniform hyper-
graph on n vertices such that no 6 vertices contain 3 edges. Answering
a question of Brown, Erdős and Sós [19], Ruzsa and Szemerédi showed
that f (3)(n, 6, 3) = o(n2). Their proof used several iterations of an early
version of Szemerédi’s regularity lemma [111].

This result, developed by Szemerédi in his proof of the Erdős-Turán
conjecture on arithmetic progressions in dense sets [110], states that every
graph may be partitioned into a small number of vertex sets so that the
graph between almost every pair of vertex sets is random-like. Though
this result now occupies a central position in graph theory, its importance
only emerged over time. The resolution of the (6, 3)-problem was one of
the first indications of its strength.

1Supported by a Royal Society University Research Fellowship.
2Supported by a Simons Fellowship and NSF Grant DMS-1069197.
3The two results are not exactly equivalent, though the triangle removal lemma

may be proved by their method. A weak form of the triangle removal lemma, already
sufficient for proving Roth’s theorem, is equivalent to the Ruzsa-Szemerédi theorem.
This weaker form states that any graph on n vertices in which every edge is contained
in exactly one triangle has o(n2) edges. This is also equivalent to another attractive
formulation, known as the induced matching theorem. This states that any graph on
n vertices which is the union of at most n induced matchings has o(n2) edges.

www.cambridge.org/9781107651951
www.cambridge.org


Cambridge University Press
978-1-107-65195-1 — Surveys in Combinatorics 2013
Edited by Simon R. Blackburn , Stefanie Gerke , Mark Wildon 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 D. Conlon and J. Fox

The Ruzsa-Szemerédi theorem was generalized by Erdős, Frankl and
Rödl [32], who showed that f (r)(n, 3r−3, 3) = o(n2), where f (r)(n, 3r−3, 3)
is the maximum number of edges in an r-uniform hypergraph such that
no 3r− 3 vertices contain 3 edges. One of the tools used by Erdős, Frankl
and Rödl in their proof was a striking result stating that if a graph on
n vertices contains no copy of a graph H then it may be made Kr-free,
where r = χ(H) is the chromatic number of H, by removing o(n2) edges.
The proof of this result used the modern formulation of Szemerédi’s reg-
ularity lemma and is already very close, both in proof and statement, to
the following generalization of the triangle removal lemma, known as the
graph removal lemma.4 This was first stated explicitly in the literature by
Alon, Duke, Lefmann, Rödl and Yuster [4] and by Füredi [47] in 1994.5

Theorem 1.1 For any graph H on h vertices and any ε > 0, there exists
δ > 0 such that any graph on n vertices which contains at most δnh copies
of H may be made H-free by removing at most εn2 edges.

It was already observed by Ruzsa and Szemerédi that the (6, 3)-problem
(and, thereby, the triangle removal lemma) is related to Roth’s theorem
on arithmetic progressions [92]. This theorem states that for any δ > 0
there exists an n0 such that if n ≥ n0, then any subset of the set [n] :=
{1, 2, . . . , n} of size at least δn contains an arithmetic progression of length
3. Letting r3(n) be the largest integer such that there exists a subset
of the set {1, 2, . . . , n} of size r3(n) containing no arithmetic progression
of length 3, this is equivalent to saying that r3(n) = o(n). Ruzsa and
Szemerédi observed that f (3)(n, 6, 3) = Ω(r3(n)n). In particular, since
f (3)(n, 6, 3) = o(n2), this implies that r3(n) = o(n), yielding a proof of
Roth’s theorem.

It was further noted by Solymosi [105] that the Ruzsa-Szemerédi theo-
rem yields a stronger result of Ajtai and Szemerédi [1]. This result states
that for any δ > 0 there exists an n0 such that if n ≥ n0 then any sub-
set of the set [n] × [n] of size at least δn2 contains a set of the form
{(a, b), (a + d, b), (a, b + d)} with d > 0. That is, dense subsets of the

4The phrase ‘removal lemma’ is a comparatively recent coinage. It seems to have
come into vogue in about 2005 when the hypergraph removal lemma was first proved
(see, for example, [68, 79, 107, 113]).

5This was also the first time that the triangle removal lemma was stated explicitly,
though the weaker version concerning graphs where every edge is contained in exactly
one triangle had already appeared in the literature. The Ruzsa-Szemerédi theorem was
usually [40, 41, 46] phrased in the following suggestive form: if a 3-uniform hypergraph
is linear, that is, no two edges intersect on more than a single vertex, and triangle-free,
then it has o(n2) edges. A more explicit formulation may be found in [23].
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Graph removal lemmas 3

2-dimensional grid contain axis-parallel isosceles triangles. Roth’s theo-
rem is a simple corollary of this statement.

Roth’s theorem is the first case of a famous result known as Szemerédi’s
theorem. This result, to which we alluded earlier, states that for any natu-
ral number k ≥ 3 and any δ > 0 there exists n0 such that if n ≥ n0 then any
subset of the set [n] of size at least δn contains an arithmetic progression
of length k. This was first proved by Szemerédi [110] in the early seventies
using combinatorial techniques and since then several further proofs have
emerged. The most important of these are that by Furstenberg [48, 50]
using ergodic theory and that by Gowers [54, 55], who found a way to
extend Roth’s original Fourier analytic argument to general k. Both of
these methods have been highly influential.

Yet another proof technique was suggested by Frankl and Rödl [42].
They showed that Szemerédi’s theorem would follow from the following
generalization of Theorem 1.1, referred to as the hypergraph removal

lemma. They proved this theorem for the specific case of K
(3)
4 , the com-

plete 3-uniform hypergraph with 4 vertices. This was then extended to all

3-uniform hypergraphs in [78] and to K
(4)
5 in [90]. Finally, it was proved

for all hypergraphs by Gowers [56, 57] and, independently, by Nagle, Rödl,
Schacht and Skokan [79, 89]. Both proofs rely on extending Szemerédi’s
regularity lemma to hypergraphs in an appropriate fashion.

Theorem 1.2 For any k-uniform hypergraph H on h vertices and any
ε > 0, there exists δ > 0 such that any k-uniform hypergraph on n vertices
which contains at most δnh copies of H may be made H-free by removing
at most εnk edges.

As well as reproving Szemerédi’s theorem, the hypergraph removal
lemma allows one to reprove the multidimensional Szemerédi theorem.
This theorem, originally proved by Furstenberg and Katznelson [49], states
that for any natural number r, any finite subset S of Z

r and any δ > 0
there exists n0 such that if n ≥ n0 then any subset of [n]r of size at least
δnr contains a subset of the form a ·S+d with a > 0, that is, a dilated and
translated copy of S. That it follows from the hypergraph removal lemma
was first observed by Solymosi [106]. This was the first non-ergodic proof
of this theorem. A new proof of the special case S = {(0, 0), (1, 0), (0, 1)},
corresponding to the Ajtai-Szemerédi theorem, was given by Shkredov
[103] using a Fourier analytic argument. Recently, a combinatorial proof
of the density Hales-Jewett theorem, which is an extension of the multi-
dimensional Szemerédi theorem, was discovered as part of the polymath
project [82].
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4 D. Conlon and J. Fox

As well as its implications in number theory, the removal lemma and its
extensions are central to the area of computer science known as property
testing. In this area, one would like to find fast algorithms to distinguish
between objects which satisfy a certain property and objects which are
far from satisfying that property. This field of study was initiated by
Rubinfield and Sudan [93] and, subsequently, Goldreich, Goldwasser and
Ron [52] started the investigation of such property testers for combinato-
rial objects. Graph property testing has attracted a particular degree of
interest.

A classic example of property testing is to decide whether a given graph
G is ε-far from being triangle-free, that is, whether at least εn2 edges will
have to removed in order to make it triangle-free. The triangle removal
lemma tells us that if G is ε-far from being triangle free then it must
contain at least δn3 triangles for some δ > 0 depending only on ε. This
furnishes a simple probabilistic algorithm for deciding whether G is ε-far
from being triangle-free. We choose t = 2δ−1 triples of points from the
vertices of G uniformly at random. If G is ε-far from being triangle-free
then the probability that none of these randomly chosen triples is a triangle
is (1 − δ)t < e−tδ < 1

3 . That is, if G is ε-far from being triangle-free, we
will find a triangle with probability at least 2

3 , whereas if G is triangle-free,
we will clearly find no triangles. The graph removal lemma may be used
to derive a similar test for deciding whether G is ε-far from being H-free
for any fixed graph H.

In property testing, it is often of interest to decide not only whether a
graph is far from being H-free but also whether it is far from being induced
H-free. A subgraph H ′ of a graph G is said to be an induced copy of H if
there is a one-to-one map f : V (H) → V (H ′) such that (f(u), f(v)) is an
edge of H ′ if and only if (u, v) is an edge of H. A graph G is said to be
induced H-free if it contains no induced copies of H and ε-far from being
induced H-free if we have to add and/or delete at least εn2 edges to make
it induced H-free. Note that it is not enough to delete edges since, for
example, if H is the empty graph on two vertices and G is the complete
graph minus an edge, then G contains only one induced copy of H, but
one cannot simply delete edges from G to make it induced H-free.

By proving an appropriate strengthening of the regularity lemma, Alon,
Fischer, Krivelevich and Szegedy [6] showed how to modify the graph
removal lemma to this setting. This result, which allows one to test for
induced H-freeness, is known as the induced removal lemma.

Theorem 1.3 For any graph H on h vertices and any ε > 0, there exists a
δ > 0 such that any graph on n vertices which contains at most δnh induced
copies of H may be made induced H-free by adding and/or deleting at most
εn2 edges.
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A substantial generalization of this result, known as the infinite removal
lemma, was proved by Alon and Shapira [12] (see also [76]). They showed
that for each (possibly infinite) family H of graphs and ε > 0 there is
δ = δH(ε) > 0 and t = tH(ε) such that if a graph G on n vertices contains
at most δnh induced copies of H for every graph H in H on h ≤ t vertices,
then G may be made induced H-free, for every H ∈ H, by adding and/or
deleting at most εn2 edges. They then used this result to show that every
hereditary graph property is testable, where a graph property is hereditary
if it is closed under removal of vertices. These results were extended to
3-uniform hypergraphs by Avart, Rödl and Schacht [14] and to k-uniform
hypergraphs by Rödl and Schacht [87].

In this survey we will focus on recent developments, particularly with
regard to the quantitative aspects of the removal lemma. In particular,
we will discuss recent improvements on the bounds for the graph removal
lemma, Theorem 1.1, and the induced graph removal lemma, Theorem 1.3,
each of which bypasses a natural impediment.

The usual proof of the graph removal lemma makes use of the regularity
lemma and gives bounds for the removal lemma which are of tower-type in
ε. To be more specific, let T (1) = 2 and, for each i ≥ 1, T (i + 1) = 2T (i).
The bounds that come out of applying the regularity lemma to the removal
lemma then say that if δ−1 = T (ε−cH ), then any graph on n vertices with
at most δnh copies of a graph H on h vertices may be made H-free by
removing at most εn2 edges. Moreover, this tower-type dependency is
inherent in any proof employing regularity. This follows from an important
result of Gowers [53] (see also [24]) which states that the bounds that arise
in the regularity lemma are necessarily of tower type. We will discuss this
in more detail in Section 2.1 below.

Despite this obstacle, the following improvement was made by Fox [38].

Theorem 1.4 For any graph H on h vertices, there exists a constant
aH such that if δ−1 = T (aH log ε−1) then any graph on n vertices which
contains at most δnh copies of H may be made H-free by removing at most
εn2 edges.

As is implicit in the bounds, the proof of this theorem does not make
an explicit appeal to Szemerédi’s regularity lemma. However, many of the
ideas used are similar to ideas used in the proof of the regularity lemma.
The chief difference lies in the fact that the conditions of the removal
lemma (containing few copies of a given graph H) allow us to say more
about the structure of these partitions. A simplified proof of this theorem
will be the main topic of Section 2.2.

Though still of tower-type, Theorem 1.4 improves substantially on
the previous bound. However, it remains very far from the best known

www.cambridge.org/9781107651951
www.cambridge.org


Cambridge University Press
978-1-107-65195-1 — Surveys in Combinatorics 2013
Edited by Simon R. Blackburn , Stefanie Gerke , Mark Wildon 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 D. Conlon and J. Fox

lower bound on δ−1. The observation of Ruzsa and Szemerédi [94] that
f (3)(n, 6, 3) = Ω(r3(n)n) allows one to transfer lower bounds for r3(n) to a
corresponding lower bound for the triangle removal lemma. The best con-
struction of a set containing no arithmetic progression of length 3 is due to
Behrend [16] and gives a subset of [n] with density e−c

√
log n. Transferring

this to the graph setting yields a graph containing εc log ε−1

n3 triangles
which cannot be made triangle-free by removing fewer than εn2 edges.
This quasi-polynomial lower bound, δ−1 ≥ ε−c log ε−1

, remains the best
known.6

The standard proof of the induced removal lemma uses the strong
regularity lemma of Alon, Fischer, Krivelevich and Szegedy [6]. We will
speak at length about this result in Section 3.1. Here it will suffice to say
that, like the ordinary regularity lemma, the bounds which an application
of this theorem gives for the induced removal lemma are necessarily very
large. Let W (1) = 2 and, for i ≥ 1, W (i + 1) = T (W (i)). This is
known as the wowzer function and its values dwarf those of the usual
tower function.7 By using the strong regularity lemma, the standard proof
shows that we may take δ−1 = W (aHε−c) in the induced removal lemma,
Theorem 1.3. Moreover, as with the ordinary removal lemma, such a
bound is inherent in the application of the strong regularity lemma. This
follows from recent results of Conlon and Fox [24] and, independently,
Kalyanasundaram and Shapira [62] showing that the bounds arising in
strong regularity are necessarily of wowzer type.

In the other direction, Conlon and Fox [24] showed how to bypass this
obstacle and prove that the bounds for δ−1 are at worst a tower in a power
of ε−1.

Theorem 1.5 There exists a constant c > 0 such that, for any graph H
on h vertices, there exists a constant aH such that if δ−1 = T (aHε−c)
then any graph on n vertices which contains at most δnh induced copies
of H may be made induced H-free by adding and/or deleting at most εn2

edges.

6It is worth noting that the best known upper bound for Roth’s theorem, due to
Sanders [96], is considerably better than the best upper bound for r3(n) that follows

from triangle removal. This upper bound is r3(n) = O

(

(log log n)5

logn
n

)

. A recent result

of Schoen and Shkredov [100], building on further work of Sanders [97], shows that any

subset of [n] of density e
−c( log n

log log n
)1/6

contains a solution to the equation x1+· · ·+x5 =
5x6. Since arithmetic progressions correspond to solutions of x1 + x2 = 2x3, this
suggests that the answer should be closer to the Behrend bound. The bounds for
triangle removal are unlikely to impinge on these upper bounds for some time, if at all.

7To give some indication, we note that W (2) = 4, W (3) = 65536 and W (4) is a
tower of 2s of height 65536.
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A discussion of this theorem will form the subject of Section 3.2. The
key observation here is that the strong regularity lemma is used to prove an
intermediate statement (Lemma 3.2 below) which then implies the induced
removal lemma. This intermediate statement may be proved without re-
course to the full strength of the strong regularity lemma. There are also
some strong parallels with the proof of Theorem 1.4 which we will draw
attention to in due course.

In Section 3.3, we present the proof of Alon and Shapira’s infinite
removal lemma. In another paper, Alon and Shapira [11] showed that the
dependence in the infinite removal lemma can depend heavily on the family
H. They proved that for every function δ : (0, 1) → (0, 1), there exists a
family H of graphs such that any δH : (0, 1) → (0, 1) which satisfies the
infinite removal lemma for H satisfies δH = o(δ). However, such examples
are rather unusual and the proof presented in Section 3.3 of the infinite
removal lemma implies that for many commonly studied families H of
graphs the bound on δ−1

H is only tower-type, improving the wowzer-type
bound from the original proof.

Our discussions of the graph removal lemma and the induced removal
lemma will occupy the bulk of this survey but we will also talk about
some further recent developments in the study of removal lemmas. These
include arithmetic removal lemmas (Section 4) and the recently developed
sparse removal lemmas which hold for subgraphs of sparse random and
pseudorandom graphs (Section 5). We will conclude with some further
comments on related topics.

2 The graph removal lemma

In this section we will discuss the two proofs of the removal lemma,
Theorem 1.1, at length. In Section 2.1, we will go through the regularity
lemma and the usual proof of the removal lemma. Then, in Section 2.2,
we will consider a simplified variant of the second author’s recent proof
[38], showing how it connects to the weak regularity lemma of Frieze and
Kannan [44, 45].

2.1 The standard proof

We begin with the proof of the regularity lemma and then deduce the
removal lemma. For vertex subsets S, T of a graph G, we let eG(S, T )
denote the number of pairs in S × T that are edges of G and dG(S, T ) =
eG(S,T )
|S||T | denote the fraction of pairs in S × T that are edges of G. For

simplicity of notation, we drop the subscript if the graph G is clear from
context. Although non-standard, it will be convenient to define the edge

density of a graph G = (V,E) to be d(G) = d(V, V ) = 2e(G)
|V |2 , which is the
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8 D. Conlon and J. Fox

fraction of all ordered pairs of (not necessarily distinct) vertices which are
edges. A pair (S, T ) of subsets is ε-regular if, for all subsets S′ ⊂ S and
T ′ ⊂ T with |S′| ≥ ε|S| and |T ′| ≥ ε|T |, we have |d(S′, T ′) − d(S, T )| ≤ ε.
Informally, a pair of subsets is ε-regular with a small ε if the edges between
S and T are uniformly distributed among large subsets.

Let G = (V,E) be a graph and P : V = V1∪. . .∪Vk be a vertex partition
of G. The partition of P is equitable if each pair of parts differ in size by
at most 1. The partition P is ε-regular if all but at most εk2 pairs of parts
(Vi, Vj) are ε-regular. Note that we are considering all k2 ordered pairs
(Vi, Vj), including those with i = j. We next state Szemerédi’s regularity
lemma [111].

Lemma 2.1 For every ε > 0, there is K = K(ε) such that every graph
G = (V,E) has an equitable, ε-regular vertex partition into at most K
parts. Moreover, we may take K to be a tower of height O(ε−5).

Let q : [0, 1] → R be a convex function. For vertex subsets S, T ⊂ V
of a graph G, let q(S, T ) = q(d(S, T ))|S||T |/|V |2. For partitions S : S =
S1∪. . .∪Sa and T : T = T1∪. . .∪Tb, let q(S, T ) =

∑

1≤i≤a,1≤j≤b q(Si, Tj).
For a vertex partition P : V = V1∪ . . .∪Vk of G, define the mean-q density
to be

q(P ) = q(P, P ) =
∑

1≤i,j≤k

q(Vi, Vj).

We next state some simple properties which follow from Jensen’s in-
equality using the convexity of q. A refinement of a partition P of a vertex
set V is another partition Q of V such that every part of Q is a subset of
a part of P .

Proposition 2.2 1. For partitions S and T of vertex subsets S and
T , we have q(S, T ) ≥ q(S, T ).

2. If Q is a refinement of P , then q(Q) ≥ q(P ).

3. If d = d(G) = d(V, V ) is the edge density of G, then, for any vertex
partition P ,

q(d) ≤ q(P ) ≤ dq(1) + (1 − d)q(0).

The first and second part of Proposition 2.2 show that by refining a
vertex partition the mean-q density cannot decrease, while the last part
gives the range of possible values for q(P ) if we only know the edge density
d of G.

The convex function q(x) = x2 for x ∈ [0, 1] is chosen in the standard
proof of the graph regularity lemma and we will do the same for the rest
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of this subsection. The following lemma is the key claim for the proof of
the regularity lemma. The set-up is that we have a partition P which is
not ε-regular. For each pair (Vi, Vj) of parts of P which is not ε-regular,
there are a pair of witness subsets Vij , Vji to the fact that the pair of parts
is not ε-regular. We consider the coarsest refinement Q of P so that each
witness subset is the union of parts of Q. The lemma concludes that the
number of parts of Q is at most exponential in the number of parts of P
and, using a Cauchy-Schwarz defect inequality, that the mean-q density
of the partition Q is substantially larger than the mean-q density of P .
Because it simplifies our calculations a little, we will assume, when we say
a partition is equitable, that it is exactly equitable, that is, that all parts
have precisely the same size. This does not affect our results substantially
but simplifies the presentation.

Lemma 2.3 If an equitable partition P : V = V1 ∪ . . . ∪ Vk is not ε-
regular then there is a refinement Q of P into at most k2k parts for which
q(Q) ≥ q(P ) + ε5.

Proof For each pair (Vi, Vj) which is not ε-regular, there are subsets
Vij ⊂ Vi and Vji ⊂ Vj with |Vij | ≥ ε|Vi| and |Vji| ≥ ε|Vj | such that
|d(Vij , Vji) − d(Vi, Vj)| ≥ ε. For each part Vj such that (Vi, Vj) is not
ε-regular, we have a partiton Pij of Vi into two parts Vij and Vi \ Vij . Let
Pi be the partition of Vi which is the common refinement of these at most
k − 1 partitions of Vi, so Pi has at most 2k−1 parts. We let Q be the
partition of V which is the union of the k partitions of the form Pi, so Q
has at most k2k−1 parts. We have

q(Q) − q(P ) =
∑

i,j

(q(Pi, Pj) − q(Vi, Vj))

≥
∑

(Vi,Vj) irregular

(q(Pi, Pj) − q(Vi, Vj))

≥
∑

(Vi,Vj) irregular

(q(Pij , Pji) − q(Vi, Vj))

=
∑

(Vi,Vj) irregular

∑

U∈Pij ,W∈Pji

|U ||W |

|V |2
(d(U,W ) − d(Vi, Vj))

2

≥
∑

(Vi,Vj) irregular

|Vij ||Vji|

|V |2
(d(Vij , Vji) − d(Vi, Vj))

2

≥ εk2
( ε

k

)2

ε2

= ε5,
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10 D. Conlon and J. Fox

where the first and third inequalities are by noting that the summands
are nonnegative and the second inequality follows from the first part of
Proposition 2.2, which shows that the mean-q density cannot decrease
when taking a refinement. In the fourth inequality, we used that |Vij | ≥
ε|Vi| ≥

ε
k
|V | and similarly for |Vji|. Finally, the equality in the fourth line

follows from the identity

∑

U∈Pij ,W∈Pji

|U ||W |d(Vi, Vj) =
∑

U∈Pij ,W∈Pji

|U ||W |d(U,W ),

which counts e(Vi, Vj) in two different ways. This completes the
proof. �

The next lemma, which is rather standard, shows that for any vertex
partition Q, there is a vertex equipartition P ′ with a similar number of
parts to Q and mean-square density not much smaller than the mean-
square density of Q. It is useful in density increment arguments where
at each stage one would like to work with an equipartition. It is proved
by first arbitrarily partitioning each part of Q into parts of order |V |/t,
except possibly one additional remaining smaller part, and then arbitrarily
partitioning the union of the smaller remaining parts into parts of order
|V |/t.

Lemma 2.4 Let G = (V,E) be a graph and Q : V = V1 ∪ . . . ∪ Vℓ be a
vertex partition into ℓ parts. Then, for q(x) = x2, there is an equitable
partition P ′ of V into t parts such that q(P ′) ≥ q(Q) − 2 ℓ

t
.

Combining Lemmas 2.3 and 2.4 with t = 4ε−5|Q| ≤ ε−5k2k+2, we
obtain the following corollary.

Corollary 2.5 If an equitable partition P : V = V1 ∪ . . . ∪ Vk is not ε-
regular then there is an equitable refinement P ′ of P into at most ε−5k2k+2

parts for which q(P ′) ≥ q(P ) + ε5/2.

We next show how Szemerédi’s regularity lemma, Lemma 2.1, can be
quickly deduced from this result.

Proof To prove the regularity lemma, we start with the trivial partition
P0 into one part, and iterate the above corollary to obtain a sequence
P0, P1, . . . , Ps of equitable partitions with q(Pi+1) ≥ q(Pi) + ε5/2 until we
arrive at an equitable ε-regular partition Ps. As the mean-square density
of each partition has to lie between 0 and 1, after at most 2ε−5 iterations
we arrive at the equitable ε-regular partition Ps with s ≤ 2ε−5. The
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