

CAMBRIDGE PHYSICAL SERIES

EXPERIMENTAL HARMONIC MOTION

EXPERIMENTAL HARMONIC MOTION

A MANUAL FOR THE LABORATORY

 \mathbf{BY}

G. F. C. SEARLE, Sc.D., F.R.S.

UNIVERSITY LECTURER IN EXPERIMENTAL PHYSICS

AND

DEMONSTRATOR IN EXPERIMENTAL PHYSICS

AT THE CAVENDISH LABORATORY

FELLOW OF PETERHOUSE

CAMBRIDGE: at the University Press

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107650459

© Cambridge University Press 1915

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1915 First paperback edition 2014

 $\label{lem:condition} \textit{A catalogue record for this publication is available from the \textit{British Library}}$

ISBN 978-1-107-65045-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

PREFACE

THE subject of Harmonic Motion presents difficulties to many students. For some reason they fail to get any real green students. For some reason they fail to get any real grasp of the principles and in consequence dare not trust themselves to apply them to the simple examples they meet with in practical physics, even in those cases where the mathematical analysis is quite elementary. The present little volume is an attempt to meet the difficulty. The simplest parts of the theory of Harmonic Motion are considered in Chapter I. In Chapter II descriptions are given of a number of experiments which illustrate the principles of the subject. Where necessary, the theory of Chapter I is extended to meet the problem in hand. In each case the method has been found by experience to be such that a serious student can rely upon obtaining a result which he will feel is a satisfactory reward of not more than about two hours' work. In some cases it would be possible to devise arrangements which would secure greater accuracy, but in my class at the Cavendish Laboratory we have to be content with what may be described as Rapid Physics. We teach Mechanics, Heat, Light, Electricity and Magnetism in the same rooms so that nearly all the apparatus has to be such that it can be readily moved from place to place. The apparatus described is of a simple description, but this, I hope, will not be found to be a disadvantage. The simpler the apparatus, the less likely it is to go wrong—a consideration which will appeal to every demonstrator. I have tried to design the apparatus so that the physical realities may conform as closely as I could make them, under the existing laboratory limitations, to the ideal conditions contemplated in the mathematical theory.

The volume concludes with a few Notes dealing with some points in the mathematical theory of the subject.

In the preface to the Manual on "Experimental Elasticity," published in 1908, I expressed the hope that an "Experimental Optics" would be published in a few months and that, if life and health were given me, this might be followed by some volumes on other parts of physics. But in 1910 I experienced a severe

vi PREFACE

nervous breakdown and I was absent from Cambridge till October 1911. Since then I have carried on the class, a work making great demands upon a demonstrator, since there have been sometimes over 50 students working in the class at the same time. Those who have "broken down" will perhaps understand that this work of teaching is a sufficient excuse for some delay in the appearance of the Experimental Optics and the other volumes. But the breakdown was much more than merely a rather trying experience for it has had results for which I have much cause to be thankful.

As the effort required to take up again all the threads of the partially written Experimental Optics and to complete the book would have been considerable, I decided, in making a fresh start, to take the rather easier course of publishing the work done in my class in Experimental Harmonic Motion. I still hope that the Optics is merely delayed; I have done something in the way of collecting materials for it, and part of the book is in type.

To make the work done in my class available to some extent to other teachers and students, I have in recent years communicated to the *Proceedings of the Cambridge Philosophical Society* accounts of several experiments in Optics and other parts of physics. Some other optical experiments are described in Vol. II. of the *Proceedings of the Optical Convention*, 1912.

I have authorised Messrs W. G. Pye and Co., of Cambridge, to supply apparatus made to my designs.

I have to thank Mr G. Stead, of Clare College, for very efficient help in the preparation of this volume from the manuscripts used in my practical class. Mr J. R. Airey, of St John's College, assisted in 1905 in some of the preliminary work, and my wife has also helped.

I cannot end this preface without expressing my thankfulness for the kindness and consideration of those who have assisted me in the teaching in my class and for the enthusiasm and friendship of the students. Above all, I must give thanks to God for giving me the restoration of health that has enabled me to write this book.

G. F. C. SEARLE.

1 May 1915.

CONTENTS

CHAPTER I

ELEMENTARY THEORY OF HARMONIC MOTION

SECTION									PAGE
1.	Introduction								1
2.	Harmonic motion .								2
3.	The velocity								3
4.	The acceleration .								3
5.	Application of the calculus	8.							4
6.	Acceleration of a point in	unifo	orm c	ircular	moti	on			4
7.	The periodic time .								5
8.	Isochronism			•					6
9.	Summary of results .								6
10.	Differential equation of ha								6
11.	Angular vibrations .								7
12.	Application of dynamics								8
13.	Example (i)								9
14.	Example (ii)								9
15.	Systems with one degree	of fre	\mathbf{edom}						10
16.	Potential and kinetic ener								11
17.	Periodic time								12
18.	Application of the calculus	s.							13
19.	Energy formulae .		•	•	•	•	•	•	14
	$\mathrm{CH}A$	\PT	ER	II					
	EXPERIMENTAL WOL	RK I	N H.	ARMO	NIC	MO	rion	Ī	
20.	Introduction						•		15
21.	Time-pieces			•			•	•	15
22.	Defective centering .			•				•	17
23.	Determination of periodic	times							18

7111		CON	TEN'	rs						
	Experiment 1. Deter	minati	on o	fg b	y a s	simpl	e pen	dulu	.m	
ECTIO	N									PAGI
24.	Theory of simple pend	ulum								19
25.	Pendulum with bob of	finite	size							20
26.	Experimental details.									21
27.	Experimental details . Practical example .	•	•	•	•	•		•	•	23
Ex	periment 2. Harmonic	motio	n of	a bo	dy sı	ıspen	ded 1	оу а	sprir	ıg
28.	Approximate theory .									25
29.	Experimental details.	•								27
30.	Approximate correction						ng			28
31.	Practical example .	•		•		•			•	30
	Experiment 3. Harmo					d boo	ly su	speno	led	
	b	y a to	rsion	wire	9					
32.	Introduction									31
33.	Theory of experiment									31
34.	Vibrating system .									32
3 5.	Determination of the r	elation	betv	veen	coup	le an	d ang	gle		34
36.	Practical example .						. `	٠.		38
E x 37.	periment 4. Study of Introduction	-		ith v	ariab	le m	omen	t of	inert	ia 39
3 8.										40
3 9.	Practical example .		•	•	•	•	•	٠	•	41
	Experiment 5. 'Dynam' to twi	nical o				of rat	io of	coup	ole	
40.	Introduction									42
41.	Experimental details.									43
42.	Practical example .	•	•		•	•	•	•	•	44
Ex	periment 6. Comparison	n of th	ne me	omen	ts of	iner	tia of	two	bodi	es
43.	Theory of experiment									45
44.	Practical example .									45
	Experiment 7. Exp	erimen	ıt wi	th a	pair	of in	ertia	bars		
45.	Introduction									46
46.	Theory of experiment									47
47.	Experimental details.					•				49
48.	Practical example .									50

			CON	ITEN	TS						ix
	-		rmina a rigi			he m um	omer	nt of	inert	ia	
BECTI	ON										PAGE
49.	v 0 1										51
50.	1										53
51.									•		53
52.								•		•	55
53.	Practical example	•	•	•	•	•	•	•	•	٠	56
	Experiment 9. Ex		imen ment				ım w	ith v	ariab	ole	
54.	Introduction .										57
55.	Experimental details	١.									57
56.	Practical example	•	•			• .	•	•	•	•	59
	Experiment 10. D)ete:	rmine	tion	of g	by a	ı rigi	d per	adulv	ım	
57.	Introduction .										60
58.	Experimental details								·		60
59.	Practical example		•	•	٠	•	•	•	•		62
	Experiment 11.	. I	Pendu	lum	on a	yield	ding	suppo	ort		
60.	Introduction .										62
61.	Experimental details		•								64
62.	Practical example	•	•	•	•		•	•	•	•	66
Expé	riment 12. Determin	scil	lation	s of	a sp					conc	ave
63.	Introduction . Theory of the method		•	•	•		•				66
64.	Theory of the metho	d	•	•	•	•	•	•	•	•	67
65.	Reaction between sph				or	•	•	•	•		69
66.	Experimental details			•		•	•	•	•		70
67.	Practical example	•	•	•	•	•	•	•	•	•	71
	Experiment 13. If of a r							scilla	tions		
68.	Introduction .							_			72
69.	Experimental details		•	•				·		•	74
70.	Practical example										75

X CONTENTS

Experiment 14. Study of a vibrating system with two degrees of freedom

SECTIO:	N											PAGE
71.	$Th\epsilon$	eory of experimen	t									75
72.	Exp	erimental details										81
73.	Pra	ctical example	•	•	٠	•	•	•	•	•	•	83
Note	Т.	On the vibration	of a	body	susp	endec	l fron	n a lis	ht sr	ring		84
					~				5 ~ <u>I</u>			-
Note	II.	Periodic time of a	ı per	ndulu	ım vil	oratin	g thr	ough	a fini	ite ar	c	87
Note	III.	Periodic time for	fini	ite n	otion		•	•	•	•		89
Note	IV.	Periodic times of	a pe	endu	lum v	vith t	wo de	egrees	of fr	eedor	m	91