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CHAPTER 1

ELEMENTARY THEORY OF HARMONIC MOTION

1. Introduction. In experimental physics, it very often
happens that the system, whose motions are observed, performs
oscillations and it is not difficult to give practical reasons why this
type of motion occurs so much more frequently than any other
type.

To begin with, it is but seldom we can observe a body moving
uniformly along a straight line. The slow fall with a limiting
velocity of a small sphere through a viscous liquid is one instance,
but it would be difficult to name many more.

When a body is falling freely or is under the action of a
“diluted” gravitational action, as when a sphere rolls down an
inclined plane, or two bodies move in an Atwood’s machine, the
motion suffers uniform acceleration in a straight line, but it is
perhaps only by means of gravity that uniform acceleration in
a straight line can be obtained. Uniformly accelerated motions
have the practical disadvantage that the interval of time to be
measured is short, when the motion is limited to a few metres, as
it is in an ordinary room, unless the acceleration is very slow,
in which case the effects of disturbing forces may rival the effects
we wish to study.

When a body is compelled to turn about a fixed axis, the space
required for the movement is comparatively small, so that one of
the objections to uniform or uniformly accelerated motion in a
straight line does not apply. In the case of uniform angular
velocity, a supply of power is required to maintain the motion, as
when the disc of a siren is driven by an electromotor. In such

8. H. M. 1
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2 ELEMENTARY THEORY OF HARMONIC MOTION [CH‘

a case we are, however, generally but little concerned with the
dynamics of the apparatus, our attention being confined to pro-
ducing a uniform rotation somehow.

To produce uniform angular acceleration in the absence of
friction, a couple of constant magnitude would be necessary,
but such a couple it would be very difficult, if not impossible,
to produce.

The reader will thus perceive that he is likely to meet with
very few instances of uniform or uniformly accelerated motion
either along a straight line or round a fixed axis.

When a vibratory motion is substituted for one in which the
movement is always in one direction, a great advantage is at once
gained. For now, even in the case of rectilinear motion, only a
comparatively small space is required ; and in both rectilinear and
angular motions, although the time of one vibration may be small,
it can be found with considerable accuracy by observing the time
occupied by a large number of vibrations, as can be done if the
vibrations die only slowly away. In most cases, further, the time
of vibration is practically independent of the amplitude of vibra-
tion, so long as the amplitude is “small.”

2. Harmonic motion. On a circle with O (Fig. 1) for its
centre, take a point P and draw a perpen-

dicular PN from P upon any diameter :

AOA’. Then, if P move round the circle M .
with uniform angular velocity, the point N |

will move backwards and forwards along A o N A
AOA’ in a definite manner, and the motion

of N is called harmonic. The length 04 is

called the amplitude of the oscillation, and Fi:: L

the time occupied by N in going from 4
to A’ and back to A is called the time of a complete vibration,
or the periodic time.

Since N is the foot of the perpendicular PN, the velocity and
acceleration of N along AOA’ are equal to the components,
parallel to AOA’, of the velocity and acceleration of P.

Let OP revolve in the counter-clockwise direction, let o
radians per second be the angular velocity of OP, let the radius
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I] ELEMENTARY THEORY OF HARMONIC MOTION 3

of the circle be » cm., and let ON =z cm., O4 being the positive
direction of #. Then, if ¢ seconds be the time since P was last
at A, the angle POA is ot radians. Hence we have

2=0N=7rcoswl, ....cccc.cevvrrnenn.. 1)

and thus z is proportional to cos wt, If PM be drawn per-
pendicular to OB, where OB is perpendicular to OA, the motion
of M will be harmonic also and we shall have

Y=0M=rsin wt. ....coccoeevenennenn(2)

The functions cos wf and sinwt occur in the theory of the
vibrations of stretched strings, and it is from the connexion of
such strings with the musical scale that the use of the adjective
harmonic has been extended to the motion of a point whose dis-
placement is proportional to cos wt or sin wt.

3. The velocity. The length of arc passed over by P in
one sécond is 7 times the angle turned through by OP in one
second, and hence, if vcm.sec.™ be the velocity of P along the

circumference of the circle,
L o T os 3)

Since this velocity is perpendicular to OP, its component parallel
to 04 is — re sin POA4, and thus, if u be the velocity of N along
0A4,

U=—rwsinwl=—v8I0 Wh .ccoovrurennn. 4)

4 The acceleration. Since u is the rate at which x
increases with the time, the rate of increase of r cos wt is — rw sin wt.
Writing wt + 47 for wt in this expression, and multiplying by o,
we see that the rate of increase of r® cos (ot + 37) or of —rw sin wt
18 —rw*sin (wt + 4 7) or — rw?cos wt. But the rate of increase of u
i8 the acceleration of N, and hence, if fcm. sec.~* be the accelera-
tion of N in the direction 0A,

= — 70 COS W = — @ ..vrierrireannnnans 5)
From this equation it will be seen that, when = is positive, f is
negative and vice versa.

Hence, when a point moves with harmonic motion along a
straight line, its acceleration is always directed towards the centre
0, and is proportional to its distance from O.

1—2

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107650459
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-65045-9 - Experimental Harmonic Motion: A Manual for the Laboratory
G. F. C. Searle

Excerpt

More information

4 ELEMENTARY THEORY OF HARMONIC MOTION [cH.
Since, by (3), @ =v/r, we have rw®=v*/r, and thus

f=- v; COS @l vevrevrirnrininiinennenns (6)

5. Application of the calculus. The velocity and the
acceleration of the moving point N (Fig. 1) can be readily found
by the use of the calculus.

Since, by (1), @ =r_coswt,

we have u =dz/dt = — rw sin wt
and S =d/dt* = du/dt = — rw? cos t,
so that Jf=— 0%,

as found in § 4.

6. Acceleration of a point in uniform circular motion.
The acceleration of N may also be deduced from the acceleration
of a point moving uniformly round a circle.

Let P (Fig. 2) be a point moving round a circle of radius r
with uniform velocity v, the angular velocity of the radius OP
being w. When the point is at P, it is moving
along the tangent PT with the velocity o,
and when it is at P’, it is moving along the
tangent P’T’ with the velocity ». If ¢ be the
time of describing PP’, the angle POP’ is
equal to wt. Now the velocity of the moving
point at P’ can be resolved into v sin w¢
parallel.to PO, and vcos wt parallel to PT.
In the time #, the point has gained the
velocity vsin wt parallel to PO, and hence, if a,, be its average
acceleration parallel to PO,

Fig. 2.

_vsinet _ sinet

a, Vo .
it t wt

As t and ot approach zero, the average value, during the journey
from P to P’, of the acceleration of the point parallel to PO,
approaches a limiting value, which is its actual acceleration a in
the direction from P to O when the point is at P, and thus the
acceleration of the point at P is given by the limiting value which
@4 approaches as ¢ approaches zero. Since sin wt/wt approaches
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1] ELEMENTARY THEORY OF HARMONIC MOTION 5

the limiting value unity as wt approaches zero, the acceleration in
the direction PO, of the point when at P, is given by
0= V0. venrnrenenrnnereeieneaneeens (7
We must now see whether the point, as it passes through P,
has or has not any acceleration parallel to the tangent PT. If B
be the average acceleration of the point parallel to PT,
Bav = (1/t) (v cos wt — v) = — (2v/t) sin® } ot
sin ot
} 0t
and this approaches the limiting value zero when ¢ approaches
zero. Thus, when the moving point is at P, it has no acceleration
along the tangent at P.
Hence, when a point moves uniformly round a circle, the only
acceleration which it has is towards the centre at each instant.
Since v=rw, the acceleration a can be expressed by any of the
three following formulae :—

= — Y0 .8in % wt,

A=UW ceevirrririnirininiiiieinenens 8)
=P i )
=W e (10)

We can now deduce the acceleration of N (Fig. 1) from that of
P, Since the acceleration of P is w?r or «*. PO in the direction
PO, it follows, from the triangle of accelerations, that the accelera-
tion of P parallel to 40 is w*. NO or oz towards 0. But the
acceleration of N is equal to the component of the acceleration of
P parallel to 40, and thus f, the acceleration of N in the positive
direction 04, is given by
Fmm @ e (11)

7. The periodic time. As the point P goes round the
circle, the point N (Fig. 1) oscillates along 404’ and the times of
a complete oscillation of NV and of a complete revolution of P are
equal. Hence, if the time of a complete oscillation of N, or the
periodic time of N, be T seconds, the radius OP describes the
angle 27 radians .in a time T seconds when moving with the
angular velocity » radians per second.

Hence =%E. ........................... (12)
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6 ELEMENTARY THEORY OF HARMONIC MOTION [cn.

Since @® is equal to the acceleration which the point has
towards O when z, the displacement, is unity, this result can be
written

2

~ Wacceleration for unit displacement -

...... (18)

If a starting point N, be chosen on AA’ and if at a given
instant N is moving through N, in a given direction, it is clear
that the interval, which elapses before N is again moving through
N, in the same direction (for the first time), is independent of the
position of N,.

8. Isochronism. The radius of the auxiliary circle does
not appear in the formula for the periodic time and hence T is
independent of the amplitude. The extent of the oscillation has
therefore no influence upon the time of a complete oscillation. In
consequence of this property, which is obviously of great import-
ance, the vibrations are called tsochronous.

9. Summary of results. The results we have obtained may
be restated as follows:—If a point NV moving along a straight line
have an acceleration uz towards a fixed point O on this line,
where « is the distance of N from O, the acceleration when there
is unit displacement is u. Hence, by §§ 7, 8, the point performs
isochronous vibrations in the time T, where

m 2w 27
T=—F== . == .
Vu  Vacceleration for unit displacement

If T be observed, the value of x can be found from the equation

4
Mm = “T; L N (14!)

10. Differential equation of harmonic motion. The
time of oscillation of a point moving along the axis of z and
having the acceleration —ux can be readily deduced by the
calculus. For the equation of motion

d*z
-Jt-ﬂ il % A (15)
is satisfied by
Z=1rcos ,u%t+ssin e, (186)
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1] ELEMENTARY THEORY OF HARMONIC MOTION 7

where » and s are any constants. If the origin of time be so
chosen that, when /ﬁt = 4, # =0, we have s =0, and thus

=7 cos y.‘l't, ........................ an
which agrees with the value found in §2, if w*=pu. The velocity
u is given by
u =dz/dt=— 7‘,1,% sin ,u.ét + s,u.ﬁ cos p.%t, ......... 18)
and, when s =0,
U= r,u,'b sin pit, ..................... 19)

which agrees with the result in §3.

Whatever the values of » and s, the velocity, dw/dt, and the
displacement, #, both go through complete cycles in the time
27/ p, since, when ¢ increases by 27/vp, the quantity ,u,gt increases
by 2. Hence the periodic time is 27/Vp.

It should be noticed that this solution is applicable to any
coordinate and is not limited to the case in which a point moves
along a straight line. Thus, if ¢ be any codrdinate which fixes the
position of the body and if there be a restoring acceleration of
the corresponding type of the amount u¢, the equation of motion
will be

a*¢ _
EE{ == P’¢J

and the periodic time will be 27/¥ as before.

11. Angular vibrations. In many cases of oscillation, the
body, whose motion is under consideration, instead of moving along
a straight line, turns about a fixed axis. Here the position of the
body is determined by means of a plane containing the axis and
fixed in the body, and, as the body vibrates, this plane vibrates
through equal angles on either side of a plane containing the axis
and fixed in space. If the angular acceleration, i.e. the rate of
change of the angular velocity of the moving plane, be proportional
to the angle through which it has turned from the reference plane,
and if it always tend to bring the moving plane back to the refer-
ence plane, then the motion of the body is again called harmonic.
We may speak of the acceleration as a restoring acceleration.

If we take a point N moving on a straight line in such a way
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8 ELEMENTARY THEORY OF HARMONIC MOTION [CH.

that when the moving plane has turned through an angle 6 radians
from the reference plane in the positive direction, the point N has
moved 6 cm. in the positive direction from a fixed point O on the
line, then the acceleration of N will be numerically equal to the
angular acceleration of the moving plane. Hence if the body
oscillate under the action of a restoring acceleration uf, the point
N will have a restoring acceleration uf along the straight line.
By § 9 the periodic time of N is 27r/Vu; thus the periodic time
of the moving plane is also 2m/vu. Since the vibrations of N are
isochronous, so are also the vibrations of the body.

Hence, if a body turning about a fixed axis have a restoring
acceleration w6, when the body has turned through an angle 6
from a zero position, the body will vibrate harmonically and
isochronously about that position in the periodic time T, where

T=2_1r_ 2

Ve o (angular acceleration for one radian displacement)?

If T be observed, the valug of u can be found from the equation

4
m= F. ........................... (21)

It will be seen that the above argument applies to any cosrdinate
which fixes the position of any system. .If ¢ be such a cosrdinate
and if there be a restoring acceleration corresponding to the
covrdinate of the amount u¢, then the system will have vibrations
corresponding to ¢ which are harmonic and isochronous, and have

the periodic time 2m/vp.

12. Application of dynamics. So far we have been con-
cerned only with kinetics and have merely considered the motion
of a system without enquiring how that motion has been caused.
But, in order to make use of harmonic motion for the determina-
tion of some physical quantity @, we must introduce dynamics and
must calculate the acceleration of the system corresponding to
some codrdinate z in terms of « and Q. If f be the acceleration,
we shall find that £ is proportional to « (since by supposition the
motion is harmonic) and thus we shall be able to write

f=—[l.’l7,
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1] ELEMENTARY THEORY OF HARMONIC MOTION 9

where p is a quantity depending upon @, but independent of z, at
any rate when the amplitude is very small*.
The periodic time 7' is found by actual observation, and then,
by §9 or §11, u can be determined by the equation
4r?
K=
and from this value of u we can calculate Q.
Instances of this process occur frequently, but the two simple
examples given in §§13, 14 may aid the reader in applying the
process to actual observations.

13. Example (i). A mass M grammes is suspended by a
helical spring from a fixed support and the periodic time of the
vertical oscillations of M is found to be 7 seconds. Let us find
the restoring force which acts on M, when M is displaced from its
equilibrium position through one centimetre, the motion being
assumed to be harmonic.

By §12, the restoring acceleration, when the displacement is
x centimetres, is ux cm. sec.™, where

4?
M= 7y -
Since the mass is M grammes, the restoring force is M times the
acceleration and is thus equal to uzM dynes. The restoring force
is thus proportional to the displacement.

Hence, if F dynes be the restoring force which acts on M when

the displacement is one centimetre,
F=uM= 47;—?[ dynes.
If M be 1066 grammes and T be 191 sec., we find that the
restoring force for a displacement of one centimetre is
4r® x 1066
F=—1om

14. Example (if). A body suspended by a vertical wire is
found to vibrate about the axis of the wire in the periodic time
T secs., the moment of inertia of the body about the axis of the

* Tt oan be shown that, except under circumstances which are mathematically
conceivable but would not ocour in any experiment, if the vibration is isochronous,
g0 that the periodic time is independent of the amplitude, the motion is harmonic

= 11536 dynes.
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10 ELEMENTARY THEORY OF HARMONIC MOTION [cH.

wire being K gm.cm2 Let us find the restoring couple which
the wire exerts on the body, when the body is displaced from its
equilibrium position through one radian.

By § 12, the restoring angular acceleration, when the displace-
ment is @ radians, is u6 radians per second per second, where

4*
=Ty -
Since the moment of inertia of the body is K gm. cm.?, the restoring
couple is K times the angular acceleration®*, and is thus equal to
ubK dyne-cm. The restoring couple is therefore proportional
to the displacement.

Hence, if G dyne-cm. be the restoring couple which the wire

exerts on the body when the displacement is one radian,
G=pK = 4—“—13,21{ dyne-cm.

If the body be a disc 20 em. in diameter, with its axis vertical,
having a mass of 275 grammes, K is 4 x 275 x 107 or 13750 gm. cm.?,
and thus if 7 be 1-83 seconds, we find that the restoring couple,
when the displacement is one radian, is
_ 47 x 13750

G= 183 = 16209 x 10° dyne-cm.

15. Systems with one degree of freedom. In many
cases a vibrating system has only one degree of freedom. By this
we mean that the configuration of the system is known as soon as
a single quantity, which we call a codrdinate, is known. As an

o]
()

Fig. 3.
example, consider a uniform bar AB (Fig. 3) suspended by two
strings from the fixed points C, D. If the system be displaced
from its equilibrium position 4,B,, the strings remaining in a
vertical plane, the points A, B move on the circles A4,, BB,

* Ezxperimental Elasticity, Note III.
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