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0 Introduction: Geometry
and Geometries

Geometry is the study of shape. It takes its name from the Greek belief that The word comes from the
Greek words geo (Earth)
and metria (measuring).

geometry began with Egyptian surveyors of two or three millennia ago mea-
suring the Earth, or at least the fertile expanse of it that was annually flooded
by the Nile.

It rapidly became more ambitious. Classical Greek geometry, called
Euclidean geometry after Euclid, who organized an extensive collection of
theorems into his definitive text The Elements, was regarded by all in the early Isaac Newton

(1643–1727) was an
English astronomer,
physicist and
mathematician. He was
Professor of Mathematics
at Cambridge, Master of
the Royal Mint, and
successor of Samuel
Pepys as President of the
Royal Society.

modern world as the true geometry of space. Isaac Newton used it to formu-
late his Principia Mathematica (1687), the book that first set out the theory
of gravity. Until the mid-19th Century, Euclidean geometry was regarded as
one of the highest points of rational thought, as a foundation for practical
mathematics as well as advanced science, and as a logical system splendidly
adapted for the training of the mind. We shall see in this book that by the 1850s
geometry had evolved considerably – indeed, whole new geometries had been
discovered.

The idea of using coordinates in geometry can be traced back to Apollo-
nius’s treatment of conic sections, written a generation after Euclid. But their Apollonius of Perga

(c. 255–170 BC) was a
Greek geometer, whose
only surviving work is a
text on conics.

use in a systematic way with a view to simplifying the treatment of geome-
try is really due to Fermat and Descartes. Fermat showed how to obtain an
equation in two variables to describe a conic or a straight line in 1636, but his
work was only published posthumously in 1679. Meanwhile in 1637 Descartes
published his book Discourse on Method, with an extensive appendix enti- Pierre de Fermat

(1601–1665) was a French
lawyer and amateur
mathematician, who
claimed to have a proof of
the recently proved
Fermat’s Last Theorem in
Number Theory.

tled La Géometrie, in which he showed how to introduce coordinates to solve
a wide variety of geometrical problems; this idea has become so central a
part of mathematics that whole sections of La Géometrie read like a modern
textbook.

A contemporary of Descartes, Girard Desargues, was interested in the ideas

René Descartes
(1596–1650) was a French
scientist, philosopher and
mathematician. He is also
known for the phrase
‘Cogito, ergo sum’ (I
think, therefore I am).

of perspective that had been developed over many centuries by artists (anx-
ious to portray three-dimensional scenes in a realistic way on two-dimensional
walls or canvases). For instance, how do you draw a picture of a building,
or a staircase, which your client can understand and commission, and from
which artisans can deduce the correct dimensions of each stone? Desargues
also realized that since any two conics can always be obtained as sections of
the same cone in R

3, it is possible to present the theory of conics in a unified
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2 0: Introduction: Geometry and Geometries

way, using concepts which later mathematicians distilled into the notion of Girard Desargues
(1591–1661) was a French
architect.

the cross-ratio of four points. Desargues’ discoveries came to be known as
projective geometry.

We deal with these ideas
in Chapters 4 and 5.Blaise Pascal was the son of a mathematician, Étienne, who attended a group

of scholars frequented by Desargues. He heard of Desargues’s work from his
father, and quickly came up with one of the most famous results in the geom-
etry of conics, Pascal’s Theorem, which we discuss in Chapter 4. By the late Blaise Pascal

(1623–1662) was a French
geometer, probabilist,
physicist and philosopher.

19th century projective geometry came to be seen as the most basic geometry,
with Euclidean geometry as a significant but special case.

At the start of the 19th century the world of mathematics began to change.
The French Revolution saw the creation of the École Polytechnique in Paris
in 1794, an entirely new kind of institution for the training of military engi-
neers. It was staffed by mathematicians of the highest calibre, and run for Gaspard Monge

(1746–1818) was a French
analyst and geometer. A
strong republican and
supporter of the
Revolution, he was French
Minister of the Navy in
1792–93, but deprived of
all his honours on the
restoration of the French
monarchy.

many years by Gaspard Monge, an enthusiastic geometer who had invented a
simple system of descriptive geometry for the design of forts and other mili-
tary sites. Monge was one of those rare teachers who get students to see what is
going on, and he inspired a generation of French geometers. The École Poly-
technique, moreover, was the sole entry-point for any one seeking a career
in engineering in France, and the stranglehold of the mathematicians ensured
that all students received a good, rigorous education in mathematics before
entering the specialist engineering schools. Thus prepared they then assisted
Napoleon’s armies everywhere across Europe and into Egypt.

One of the École’s former students, Jean Victor Poncelet, was taken prisoner Jean Victor Poncelet
(1788–1867) followed a
career as a military
engineer by becoming
Professor of Mechanics at
Metz, where he worked on
the efficiency of turbines.

in 1812 in Napoleon’s retreat from Moscow. He kept his spirits up during a
terrible winter by reviewing what his old teacher, Monge, had taught him about
descriptive geometry. This is a system of projections of a solid onto a plane –
or rather two projections, one vertically and one horizontally (giving what are
called to this day the plan and elevation of the solid). Poncelet realized that
instead of projecting ‘from infinity’ so to speak, one could adapt Monge’s ideas

vertical
projection

horizontal
projection

elevation

plan

21

to the study of projection from a point. In this way he re-discovered Desargues’
ideas of projective geometry. During his imprisonment he wrote his famous
book Traité des propriétés projectives des figures outlining the foundations of
projective geometry, which he extensively rewrote after his release in 1814 and
published in 1822.

Around the same time that projective geometry was emerging, mathemati-
cians began to realize that there was more to be said about circles than they
had previously thought. For instance, in the study of electrostatics let �1 and
�2 be two infinitely long parallel cylinders of opposite charge. Then the inter-
section of the surfaces of equipotential with a vertical plane is two families of
circles (and a single line), and a point charge placed in the electrostatic field
moves along a circular path through a specific point inside each cylinder, at
right angles to circles in the families. The study of properties of such fami-
lies of circles gave rise to a new geometry, called inversive geometry, which
was able to provide particularly striking proofs of previously known results in
Euclidean geometry as well as new results.
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0: Introduction: Geometry and Geometries 3

In inversive geometry mathematicians had to add a ‘point at infinity’ to the
plane, and had to regard circles and straight lines as equivalent figures under
the natural mappings, inversions, as these can turn circles into lines, and vice-
versa. Analogously, in projective geometry mathematicians had to add a whole
‘line at infinity’ in order to simplify the geometry, and found that there were
projective transformations that turned hyperbolas into ellipses, and so on. So
mathematicians began to move towards thinking of geometry as the study of
shapes and the transformations that preserve (at least specified properties of)
those shapes.

For example, there are very few theorems in Euclidean geometry that depend
on the size of the figure. The ability to make scale copies without altering
‘anything important’ is basic to mathematical modelling and a familiar fact
of everyday life. If we wish to restrict our attention to the transformations
that preserve length, we deal with Euclidean geometry, whereas if we allow
arbitrary changes of scale we deal with similarity geometry.

Another interesting geometry was discovered by Möbius in the 1820s, in August Ferdinand Möbius
(1790–1868) was a
German geometer,
topologist, number
theorist and astronomer;
he discovered the famous
Möbius Strip (or Band).

which transformations of the plane map lines to lines, parallel lines to parallel
lines, and preserve ratios of lengths along lines. He called this geometry affine
geometry because any two figures related by such a transformation have a like-
ness or affinity to one another. This is the geometry appropriate, in a sense, to
Monge’s descriptive geometry, and the geometry that describes the shadows of
figures in sunlight.

Since the days of Greek mathematics, with a stimulus provided by the needs For the surface of the
Earth is very nearly
spherical.

of commercial navigation, mathematicians had studied spherical geometry too;
that is, the geometry of figures on the surface of a sphere. Here geometry

a

b

c
is rather different from plane Euclidean geometry; for instance the area of
a triangle is proportional to the amount by which its angle sum exceeds π ,
and there is a nice generalization of Pythagoras’ Theorem, which says that
in a right-angled triangle with sides a, b and the hypotenuse c, then cos c =
cos a · cos b. It turns out that there is a close connection between spherical
geometry and inversive geometry.

For nearly two millennia mathematicians had accepted as obvious the p
m lParallel Postulate of Euclid: namely, that given any line � and any point P

not on �, there is a unique line m in the same plane as P and � which passes
through P and does not meet �. Indeed much effort had been put into deter-
mining whether this Postulate could be deduced from the other assumptions Janos Bolyai (1802–1860)

was an officer in the
Hungarian Army.

of Euclidean geometry. In the 1820s two young and little-known mathemati-
cians, Bolyai in Hungary and Lobachevskii in Russia, showed that there
were perfectly good so-called ‘non-Euclidean geometries’, namely hyper-
bolic geometry and elliptic geometry, that share all the initial assumptions of Nicolai Ivanovich

Lobachevskii
(1792–1856) was a
Russian geometer who
became Rector of the
University of Kazan.

Euclidean geometry except the parallel postulate.
In hyperbolic geometry given any line � and any point P not on �, there are

infinitely many lines in the same plane as P and � which pass through P and do
not meet �; in elliptic geometry all lines intersect each other. However, it still
makes sense in both hyperbolic and elliptic geometries to talk about the length
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4 0: Introduction: Geometry and Geometries

of line segments, the distance between points, the angles between lines, and
so forth. Around 1900 Poincaré did a great deal to popularise these geometries Jules Henri Poincaré

(1854–1912) was a
prolific French
mathematician, physicist,
astronomer and
philosopher at the
University of Paris.

by demonstrating their applications in many surprising areas of mathematics,
such as Analysis.

By 1870, the situation was that there were many geometries: Euclidean,
affine, projective, inversive, hyperbolic and elliptic geometries. One way math-
ematicians have of coping with the growth of their subject is to re-define it so
that different branches of it become branches of the same subject. This was
done for geometry by Klein, who developed a programme (the Erlangen Pro- Christian Felix Klein

(1849–1925) was a
German algebraist,
geometer, topologist and
physicist; he became a
professor at the University
of Erlangen at the
remarkable age of 22.

gramme) for classifying geometries. His elegant idea was to regard a geometry
as a space together with a group of transformations of that space; the proper-
ties of figures that are not altered by any transformation in the group are their
geometrical properties.

For example, in two-dimensional Euclidean geometry the space is the plane
and the group is the group of all length-preserving transformations of the plane
(or isometries). In projective geometry the space is the plane enlarged (in a way
we make precise in Chapter 6) by a line of extra points, and the group is the
group of all continuous transformations of the space that preserve cross-ratio.

Klein’s approach to a geometry involves three components: a set of points
(the space), a set of transformations (that specify the invariant properties – for
example, congruence in Euclidean geometry), and a group (that specifies how
the transformations may be composed). The transformations and their group
are the fundamental components of the geometry that may be applied to differ-
ent spaces. A model of a geometry is a set which possesses all the properties of
the geometry; two different models of any geometry will be isomorphic. There
may be several different models of a given geometry, which have different For example, you will

meet two models of
hyperbolic geometry.

advantages and disadvantages. Therefore, we shall use the terms ‘geometry’
and ‘model (of a geometry)’ interchangeably whenever we think that there is
no risk of confusion.

In fact as Klein was keen to stress, most geometries are examples of pro-
jective geometry with some extra conditions. For example, affine geometry
emerges as the geometry obtained from projective geometry by selecting a line
and considering only those transformations that map that line to itself; the line
can then be thought of as lying ‘at infinity’ and safely ignored. The result was
that Klein not only had a real insight into the nature of geometry, he could even
show that projective geometry was almost the most basic geometry.

This philosophy of geometry, called the Kleinian view of geometry, is the
one we have adopted in this book. We hope that you will enjoy this introduction
to the various geometries that it contains, and go on to further study of one of
the oldest, and yet most fertile, branches of mathematics.

www.cambridge.org/9781107647831
www.cambridge.org
www.cambridge.org


Cambridge University Press
978-1-107-64783-1 - Geometry: Second Edition
David A. Brannan, Matthew F. Esplen and Jeremy J. Gray
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

1 Conics

The study of conics is well over 2000 years old, and has given rise to some of
the most beautiful and striking results in the whole of geometry.

In Section 1.1 we outline the Greek idea of a conic section – that is, a conic
as defined by the curve in which a double cone is intersected by a plane. We
then look at some properties of circles, the simplest of the non-degenerate
conics, such as the condition for two circles to be orthogonal and the equations That is, they intersect at

right angles.of the family of all circles through two given points.
We explain the focus–directrix definition of the parabola, ellipse and hyper-

bola, and study the focal-distance properties of the ellipse and hyperbola.
Finally, we use the so-called Dandelin spheres to show that the Greek conic
sections are just the same as the conics defined in terms of a focus and a
directrix.

In Section 1.2 we look at tangents to conics, and the reflection properties of
the parabola, ellipse and hyperbola. It turns out that these are useful in prac-
tical situations as diverse as anti-aircraft searchlights and astronomical optical
telescopes! We also see how we can construct each non-degenerate conic as
the ‘envelope’ of lines in a suitably-chosen family of lines.

The equations of conics are all second degree equations in x and y. In
Section 1.3 we show that the converse result holds – that is, that every sec-
ond degree equation in x and y represents a conic. We also find an algorithm
for determining from its equation in x and y which type of non-degenerate
conic a given second degree equation represents, and for finding its principal
features.

The analogue in R
3 of a plane conic in R

2 is a quadric surface, specified We use the notation R
2

and R
3 to denote

2-dimensional and
3-dimensional Euclidean
space, respectively.

by a suitable second degree equation in x , y and z. A well-known example
of a quadric surface is the cooling tower of an electricity generating station.
In Section 1.4 we find an algorithm for identifying from its equation which
type of non-degenerate quadric a given second degree equation in x, y and z
represents. We also discover that two of the non-degenerate quadric surfaces
can be generated by two different families of straight lines, and that this feature
is of practical importance.
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6 1: Conics

1.1 Conic Sections and Conics

1.1.1 Conic Sections
Conic Section is the name given to the shapes that we obtain by taking different

It is thought that the
Greek mathematician
Menaechmus discovered
the conic sections around
350 BC.

plane slices through a double cone. The shapes that we obtain from these cross-
sections are as drawn below.

6

5

1. single point 2. single line 3. pair of lines

O

O O
O

O Ox

x x x

x x

y

y
y y

y y

1
3

7

6 4 2

4. parabola 5. ellipse 6. hyperbola

Notice that the circle shown in slice 7 can be regarded as a special case of

y

O

7. Circle

x
an ellipse.

Notice, also, that the ellipse and the hyperbola both have a centre; that is,
there is a point C such that rotation about C through an angle π is a symmetry
of the conic. For example, for the ellipse and hyperbola illustrated above, the
centre is in fact just the origin. On the other hand, the parabola does not have
a centre.

In Subsection 1.1.5 we shall verify that the curves, the ‘conic sections’,
obtained by slicing through a double cone are exactly the same curves, the
‘conics’, obtained as the locus of points in the plane whose distance from
a fixed point is a constant multiple of its distance from a fixed line. As a
result, we often choose not to distinguish between the terms ‘conic section’
and ‘conic’!

We use the term non-degenerate conics to describe those conics that are
parabolas, ellipses or hyperbolas; and the term degenerate conics to describe
the single point, single line and pair of lines.

In this chapter we study conics for their own interest, and we will meet them
frequently throughout our study of geometry as the book progresses.

1.1.2 Circles
The first conic that we investigate is the circle. Recall that a circle in R

2 is the
C(a, b)

y

P(x, y)

r

x

set of points (x , y) that lie at a fixed distance, called the radius, from a fixed
point, called the centre of the circle. We can use the techniques of coordinate
geometry to find the equation of a circle with given centre and radius.
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Conic Sections and Conics 7

Let the circle have centre C(a, b) and radius r . Then, if P(x , y) is an arbi-
trary point on the circumference of the circle, the distance CP equals r . It
follows from the formula for the distance between two points in the plane that

Here we use the Distance
Formula for the distance d
between two points
(x1, y1), (x2, y2) in R

2:

d2 = (x1 − x2)2

+ (y1 − y2)2.

r2 = (x − a)2 + (y − b)2. (1)

If we now expand the brackets in equation (1) and collect the corresponding
terms, we can rewrite equation (1) in the form

x2 + y2 − 2ax − 2by + (a2 + b2 − r2) = 0.

Then, if we write f for −2a, g for −2b and h for a2 +b2 −r2, this equation
takes the form

Note here that the
coefficients of x2 and y2

are equal.

x2 + y2 + fx + gy + h = 0. (2)

It turns out that in many situations, however, equation (1) is more useful
than equation (2) for determining the equation of a particular circle.

Theorem 1 The equation of a circle in R
2 with centre (a, b) and radius

r is
(x − a)2 + (y − b)2 = r2.

For example, it follows from this formula that the circle with centre (−1, 2)
and radius

√
3 has equation

(x + 1)2 + (y − 2)2 =
(√

3
)2

;

this can be simplified to give

x2 + 2x + 1 + y2 − 4y + 4 = 3,

or
x2 + y2 + 2x − 4y + 2 = 0.

Problem 1 Determine the equation of each of the circles with the
following centre and radius:

(a) centre the origin, radius 1;
(b) centre the origin, radius 4;
(c) centre (3, 4), radius 2;
(d) centre (3, 4), radius 3.

y

O x

Problem 2 Determine the condition on the numbers f , g and h in the
equation

x2 + y2 + fx + gy + h = 0

for the circle with this equation to pass through the origin.

We have seen that the equation of a circle can be written in the form

x2 + y2 + fx + gy + h = 0. (2)

In the opposite direction, given an equation of the form (2), can we deter-
mine whether it represents a circle? If it does represent a circle, can we
determine its centre and radius?
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8 1: Conics

For example, consider the set of points (x , y) in the plane that satisfy the

Note that in equation (3)
the coefficients of x2 and
y2 are both 1.

equation:

x2 + y2 − 4x + 6y + 9 = 0. (3)

In order to transform equation (3) into an equation of the form (1), we use the
technique called ‘completing the square’ − we rewrite the terms that involve
only xs and the terms that involve only ys as follows:

Note that −2 is half the
coefficient of x , and +3 is
half the coefficient of y, in
equation (3).

x2 − 4x = (x − 2)2 − 4,

y2 + 6y = (y + 3)2 − 9.

Substituting these expressions into equation (3), we obtain

We can ‘read off’ the
centre and radius of the
circle from this equation.

(x − 2)2 + (y + 3)2 = 4.

It follows that the equation represents a circle whose centre is (2, −3) and
whose radius is 2.

In general, we can use the same method of ‘completing the square’ to rewrite Here we start with the
coefficients of x2 and y2

both equal (to 1).
Otherwise the equation
cannot be reformulated in
the form (1).

the equation

x2 + y2 + fx + gy + h = 0

in the form (
x + 1

2 f
)2 +

(
y + 1

2 g
)2 = 1

4 f 2 + 1
4 g2 − h, (4)

from which we can ‘read off’ the centre and radius.

Theorem 2 An equation of the form

x2 + y2 + fx + gy + h = 0

represents a circle with

centre
(
− 1

2 f , − 1
2 g
)

and radius
√

1
4 f 2 + 1

4 g2 − h,

provided that 1
4 f 2 + 1

4 g2 − h > 0.

Remark

It follows from equation (4) above that if 1
4 f 2 + 1

4 g2 − h < 0, then there are
no points (x , y) that satisfy the equation x2 + y2 + fx + gy + h = 0; and if
1
4 f 2 + 1

4 g2 −h = 0, then the given equation simply represents the single point(
− 1

2 f , − 1
2 g
)

.

Problem 3 Determine the centre and radius of each of the circles
given by the following equations:

(a) x2 + y2 − 2x − 6y + 1 = 0; (b) 3x2 + 3y2 − 12x − 48y = 0.
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Conic Sections and Conics 9

Problem 4 Determine the set of points (x , y) in R
2 that satisfies each

of the following equations:

(a) x2 + y2 + x + y + 1 = 0;
(b) x2 + y2 − 2x + 4y + 5 = 0;
(c) 2x2 + 2y2 + x − 3y − 5 = 0.

Orthogonal Circles
We shall sometimes be interested in whether two intersecting circles are For example, in

Chapters 5 and 6.orthogonal: that is, whether they meet at right angles. The following result
answers this question if we know the equations of the two circles.

Theorem 3 Orthogonality Test
Two intersecting circles C1 and C2 with equations

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0,

respectively, are orthogonal if and only if

f1 f2 + g1g2 = 2(h1 + h2).

Proof The circle C1 has centre A =
(
− 1

2 f1, − 1
2 g1

)
and radius r1 = You met these formulas in

Theorem 2.√
1
4 f 2

1 + 1
4 g2

1 − h1; the circle C2 has centre B =
(
− 1

2 f2, − 1
2 g2

)
and radius

r2 =
√

1
4 f 2

2 + 1
2 g2

2 − h2.
Let P be one of their points of intersection, and look at the triangle �ABP. We use the symbol � to

indicate a triangle.If the circles meet at right angles, then the line AP is tangential to the circle
C2, and is therefore at right angles to the line BP. So the triangle �ABP is

A

C1 C2

P

B

right-angled, and we may apply Pythagoras’ Theorem to it to obtain

AP2 + BP2 = AB2. (5)

Conversely, if equation (5) holds, then �ABP must be a right-angled triangle
and the circles must meet at right angles.

Now

AP2 = r2
1 = 1

4 f 2
1 + 1

4 g2
1 − h1 and

BP2 = r2
2 = 1

4 f 2
2 + 1

4 g2
2 − h2.

Also

AB2 =
(

1
2 f1 − 1

2 f2

)2 +
(

1
2 g1 − 1

2 g2

)2

=
(

1
4 f 2

1 − 1
2 f1 f2 + 1

4 f 2
2

)
+
(

1
4 g2

1 − 1
2 g1g2 + 1

4 g2
2

)
.
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10 1: Conics

Substituting for AP2, BP2 and AB2 into equation (5), and cancelling
common terms, we deduce that equation (5) is equivalent to

−h1 − h2 = − 1
2 f1 f2 − 1

2 g1g2,

that is,
f1 f2 + g1g2 = 2(h1 + h2).

This is the required result. �

Problem 5 Determine which, if any, of the following pairs of inter-
secting circles are mutually orthogonal.

(a) C1 = {
(x , y) : x2 + y2 − 4x − 4y + 7 = 0

}
and

C2 = {
(x , y) : x2 + y2 + 2x − 8y + 5 = 0

}
(b) C1 = {

(x , y) : x2 + y2 + 3x − 6y + 5 = 0
}

and
C2 = {

(x , y) : 3x2 + 3y2 + 4x + y − 15 = 0
}
.

Circles through Two Points
We shall also be interested later in the family of circles through two given Section 5.5

points. So, let two circles C1 and C2 with equations

P
R

C1

C2

Q

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0 (6)

intersect at the distinct points P and Q, say. Then, if k �= −1, the equation

x2 + y2 + f1x + g1 y + h1 + k(x2 + y2 + f2x + g2 y + h2) = 0 (7)

represents a circle since it is a second degree equation in x and y with equal
(non-zero) coefficients of x2 and y2 and with no terms in xy. This circle
passes through both P and Q; for the coordinates of P and Q both satisfy
the equations in (6) and so must satisfy equation (7).

If k = −1, equation (7) is linear in x and y, and so represents a line; since
P and Q both lie on it, it must be the line through P and Q.

Conversely, given any point R in the plane that does not lie on the circle
C2 we can substitute the coordinates of R into equation (7) to find the unique This is possible because,

since R does not lie on
C2, the term in the bracket
in (7) does not vanish
at R.

value of k such that the circle with equation (7) passes through R. We can think
of the circle C2 as corresponding to the case ‘k = ∞’ of equation (7). For, if
we rewrite equation (7) in the form

1

k
(x2 + y2 + f1x + g1 y + h1) + x2 + y2 + f2x + g2 y + h2 = 0 (8)

and let k → ∞, then 1/k → 0 and equation (8) becomes the equation of C2.

Theorem 4 Let C1 and C2 be circles with equations

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0
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