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PREFACE.

The subject, commonly called the Calculus of Variations, has
attracted a rather fickle attention at more or less isolated inter-
vals in its growth. Its progress has been neither steady nor con-
secutive. From some cause, in its nature, or in 1ts incompleteness,

or in its presentation, it has not secured an abiding interest.

Not infrequently, investigators have been concerned with appli-
cations of the Calculus and, for their purpose, have been known to

use fragmentary results.

Thus, in the theory of the potential, Dirichlet’s Principle has
been invoked. In instances when regard has been paid to the
establishment of the Principle beyond an assumption of its intuitive
truth, only the initial test belonging to weak conditions has been
imposed ; and a general inference has been drawn, which was not
justified by that test alone.

Again, the Principle of Least Action has been made the support,
and sometimes the occasional basis, of theoretical explanations of
the physics of the universe : though it should be added that the
introduction of kinetic foci in dynamics is the equivalent of another
necessary canonical test. Even so, all the recognised tests have
assumed that variations in natural phenomena must be gently
regular. Variations which, remaining small and continuous in their
magnitude, change in a violently regular or irregular manner within
a very restricted range, have usually been ignored . yet the theory
of small vibrations wields a far-flung domination.

In Newton's problem of the Solid of Least Resistance, the
formal solution satisfies all the customary tests which arise through
variations of the gently regular type. Still, more than a century

ago, Legendre proved that the solution is mathematically unsatis-
F.C.V. b
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viil PREFACE

factory, though its neglect by engineers is not due solely to mathe-

matical deficiencies.

The significance of the investigations, due to Weierstrass, is
not always recognised ; but their importance need not be empha-
sised, as though complete finality has been attained. The results,
usually associated with his name, relate to only the simplest class
among the problems which present themselves and which require
no more than the simplest form of his specially devised analysis.
There is ample scope for further research by his method, in exten-

sion of the range of its application.

The present volume attempts a systematic exposition of the
subject by what, in the main, is a uniform composite process.
Though it does not purport to be a history, the gradual historical
growth of the successive tests has governed the arrangement. A
fundamental (yet quite elementary) simplification, derived from the
Weierstrass method, has been used from the beginning, even to
obtain the results originally due to the founders of the subject.
These limited results maintain their standing, because they provide
tests which must be satisfied in simple forms of enquiry, and be-
cause they remain significant even when they are merged in the
wider results obtained by the more general method of Weierstrass.

Moreover, the volume has no pretensions to an encyclopadic
range. Processes and investigations, however useful in the ex-
ploration of other regions, are omitted unless they fall into the
course of exposition adopted. So far as I am aware, much of its
material is novel. Two sources, more than others, have been
useful to me. The first of them is the Moigno-Lindelof volume
Calcul des Vartations, published in 1861; except for the Sarrus
formalities, it seems to me an admirable exposition of the older
range of investigation. The other source is to be found in such
access to the work of Weierstrass as has been possible. Before the
year 1895, I had read a manuscript copy of notes of lectures by
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Weierstrass on his treatment of single integrals of the first order,
including the associated isoperimetrical problems; for the loan of
the volume from their College Library, I remain indebted to the
authorities of St John’s College, Cambridge. Since that date, Pro-
fessor Harris Hancock has published (1908) his volume, based
on similar notes and on lectures by Schwarz. Unfortunately, a
general expectation, that an authoritative edition of the Weierstrass
lectures would be published, has not yet been realised.

Beyond the sources just mentioned and such other sources as
are quoted in the text, my work is independent. Some mathema-
ticians may wish that the exposition had been differently balanced.
Some will feel regret, and may award blame, for the omission of the
work of writers such as Clebsch and Hilbert—an omission not_due
to lack of appreciation of their researches. Whatever its merits or
its demerits, the presentation is that which has appealed to me,
as leading most directly to a comprehension of the subject.

An abstract of the contents of the book may be useful, as an
indication of its scope.

In the first chapter, the simplest form of integral is discussed.
It involves only one dependent variable, together with the first
derivative. The method adopted is, in substance, the older method
for restricted variations; and the results obtained, including Jacobi’s
test which limits the extent of the range of the integration, are
typical of those that persist in all subsequent investigations, though
they do not constitute the aggregate of tests of a general character.
The second chapter deals with the same type of integral by the
method of Weierstrass, which makes both the dependent variable
and the independent variable in the older process to be functions
of a new independent variable, usually selected so as not to be
intrinsic to the problem; thus simultaneous independent variations
can then be imposed from the beginning upon both the variables

which occur. It is found that, for gently regular variations, no
b2
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new tests emerge from the use of the Weierstrass method,—a con-
clusion not unimportant in itself—though the formal expression of
the tests is modified. In the third chapter, both methods are
applied to integrals, which still involve only a single original depen-
dent variable and now include derivatives of the second order as
well as those of the first order. Of the analytical material in
these three chapters, convenient geometrical illustration is pro-

vided by plane curves.

The next three chapters are devoted to the discussion, by both
methods, of single integrals which involve two dependent variables
and one independent variable in their initial form, together with
derivatives of the first order, and (less generally) of the second
order, though the analytical development in the latter case is not
carried so far as in the former. The increase in the number of
variables does not lead to an increase in the number of significant
tests, though (as is almost to be expected) the expression of the
several tests tends to become more complicated. For the material
in these chapters, convenient geometrical illustration is provided
by skew curves.

The seventh chapter introduces the essential advance made by
the Weierstrass method, through the emergence of a new additional
test. The advance comes through the consideration of variations
which are not restricted to be of a gently regular type. The varia-
tions are naturally required to be continuous and, as maxima and
minima are being considered, they are required to be small in
magnitude ; but, within that small range, they are permitted to
vary even abruptly, as violently as continuous curves representing
rapid small oscillations or even as continuous serrated curves.
Many such variations can be compounded from rudimentary varia-
tions of a selected type; and the use of the latter variation leads
to the construction of a new test which, necessarily satisfied for
the most elementary form, is cumulative in its effect for the com-
posite form. This Weierstrass test is applied to single integrals
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which, of course, involve only ordinary derivatives. In the case of
the Solid of Least Resistance, it is shewn that the solution, satis-
factory under the tests associated with the gently regular type of
variation, does not obey the further test associated with the strong
variation, and therefore does not supply a minimum. It appears
also that the Principle of Least Action does not supply a mini-
mum : the demands of the tests, arising out of gentle variations,
are satisfied ; but the demand of the Weierstrass test, arising out

of strong variations, is not satisfied.

The eighth chapter is devoted to the consideration of simpler
problems of relative maxima and minima—the isoperimetrical
problems of even ancient interest. In particular, those problems
are discussed, in which the requirement of a maximum or of a
minimum is-obliged to fulfil the condition of allowing a coexistent
related integral to maintain an assigned value. Other types of
relative problems—in which, for example, persistent relations hold
among the variables—are considered, though only briefly, partly
because the first stage in their treatment is to be found in treatises
and memoirs easily accessible.

The ninth chapter deals with double integrals which, in their
initial postulation, involve one dependent variable and its two first
derivatives. The concurrent geometrical illustration is, of course,
provided by surfaces in ordinary space. Both the older method and
the later method are used for the discussion. The treatment of the
most interesting of all problems of this kind—minimal surfaces—
is simplified when the Weierstrass method is used from the be-
ginning. Schwarz’s theorem, which secures the determination of
a minimal surface by initially assigned conditions, has been ex-
tended so as to obtain an analytical expression of the Jacobi test
in limitation of the range. The tenth chapter is devoted to two
issues : one, the construction of the Weierstrass test for double
integrals and a proof that it is satisfied by minimal surfaces: the
other, the simplest type of isoperimetrical problem. The eleventh
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chapter is concerned with double integrals which involve the
partial derivatives of the second order; but there is no attempt at
a full discussion, mainly because, after the application of even the
simpler tests, the analysis becomes unwieldy and the developments
demand the differential geometry of the curvature of surfaces.

A final chapter is devoted to triple integrals, involving the
first derivatives of a single dependent variable. The convenient
geometrical illustration is provided by the consideration of volumes
in quadruple space. Only a slight use is made of the mathematical
notions of such space ; and, because the geometrical considerations
are mainly concerned with volumes, a three-fold amplitude finds,
for most purposes, a working representation in the ordinary space
of experience. The analysis, which is requisite for the full appli-
cation of the Weierstrass method to triple integrals, soon becomes
laboured ; it is here developed only so far as to construct the
necessary tests which shew that, owing to failure under the
Weierstrass test, Dirichlet’s Principle is not valid.

Before parting from the volume, I would thank Professor
H. F. Baker, for his kindness in reading the earliest sheets of the
volume. Above all, I must mention the Staff of the Univérsit;y
Press, Cambridge. Their steady and unfailing co-operation has
been my mainstay during the printing of the book. Now that my
task is ended, I tender my grateful thanks to all of them who have

shared our joint labour.
A. R. FORSYTH.

31 December 1926
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