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Self-organisation and emergence
Mario Nicodemi, Yu-Xi Chau, Christopher Oates,

Anas Rana and Leigh Robinson

Abstract

Many examples exist of systems made of a large number of comparatively

simple elementary constituents which exhibit interesting and surprising

collective emergent behaviours. They are encountered in a variety of dis-

ciplines ranging from physics to biology and, of course, economics and

social sciences. We all experience, for instance, the variety of complex

behaviours emerging in social groups. In a similar sense, in biology, the

whole spectrum of activities of higher organisms results from the in-

teractions of their cells and, at a different scale, the behaviour of cells

from the interactions of their genes and molecular components. Those,

in turn, are formed, as all the incredible variety of natural systems, from

the spontaneous assembling, in large numbers, of just a few kinds of

elementary particles (e.g., protons, electrons).

To stress the contrast between the comparative simplicity of con-

stituents and the complexity of their spontaneous collective behaviour,

these systems are sometimes referred to as “complex systems”. They in-

volve a number of interacting elements, often exposed to the effects of

chance, so the hypothesis has emerged that their behaviour might be

understood, and predicted, in a statistical sense. Such a perspective has

been exploited in statistical physics, as much as the later idea of “univer-

sality”. That is the discovery that general mathematical laws might gov-

ern the collective behaviour of seemingly different systems, irrespective

of the minute details of their components, as we look at them at different

scales, like in Chinese boxes. While the single component must be studied

on its own, these discoveries offer the hope that we might understand

different classes of complex systems from their simpler examples.
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2 Mario Nicodemi et al.

A univocal definition of “complexity” can be elusive, but the above

criteria hopefully draw a line to distinguish, in a more technical sense,

“complex” from the much broader category of “complicated” systems.

Here we introduce some of the basic mathematical tools employed to

describe their emergent behaviours. We discuss some basic concepts and

several applications (e.g., Brownian motion in physics, asset pricing in

finance) of the theory of stochastic processes, which is presented more

generally in Chapter 3. We also consider some more advanced topics

such as statistical mechanics and its applications to define the emer-

gent properties in interacting systems. The foundations of statistical

mechanics are discussed in more detail in Chapter 4. Finally, we intro-

duce more recent topics such as self-organised criticality and network

theory.

The course was taught by Mario Nicodemi. The notes that form this

chapter were written by Yu-Xi Chau, Christopher Oates, Anas Rana

and Leigh Robinson, four students of the Complexity Science Doctoral

Training Centre of the University of Warwick who attended the lectures

in 2009.

1.1 Random walks

1.1.1 Introduction

Put simply, a random walk is a mathematical formalisation of a path

a “particle” traces out after taking a sequence of random steps. The

idea of a random walk is central to the modelling of a wide range of

phenomena, including financial modelling, the diffusion of gases, genetic

drift, conformation of polymers, and a large number of other applica-

tions where the phenomenon in question evolves by a random process

in time.

Various different types of random walk exist but can be grouped into

broad categories depending on what the random walker is said to “walk

on”, and how the time evolution is defined. For example, a random

walker may be defined on a graph that evolves in discrete time, moving

from one node to another in one discrete time step, or just as well defined

would be a random walker that moved in continuous time along the

whole real line, R. We shall give no further thought to these kinds of

random walks and restrict our discussion to ones that occur along the

integers, Z in discrete time steps.
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Figure 1.1 A discrete time walk on the integers, Z. Probabilities p
and q show how likely that transition is from state to state.

To understand perhaps the simplest example of a random walk we

imagine a particle that can inhabit one of the integer points on the

number line. At time 0 the particle starts from a specific point and

moves in one time step to its next position in the following way: we

flip a coin with the result governing how the particle moves. If the coin

comes up heads then the particle moves one position to the right while

if it comes up tails then the particle moves one place to the left. If we

make n such coin tosses then what will be final position of the particle?

Obviously being a random process we can’t predict exactly where it

will end but we can say a good deal about the distribution of possible

outcomes.

1.1.2 One-dimensional discrete random walk

To try and answer such questions we need to introduce some formalism.

We define independent random variables, Xi, that can take the values

−1 and 1, with P (Xi = 1) = p and P (Xi = −1) = 1 − p = q. The Xi

represent the direction of the ith step of our random walk. Pictorially

we can represent this arrangement as shown in Fig. 1.1. To see how such

a system behaves statistically we calculate the first and second moments

and variance of Xi as follows:

〈Xi〉 =
∑

kP (Xi = k)k = 1× P (Xi = 1)− 1× P (Xi = −1) (1.1)

= p− (1− p) = 2p− 1. (1.2)

With the second moment and variance given by

〈X2
i 〉 = p+ (1− p) = 1, (1.3)

V ar[Xi] = 〈X2
i 〉 − (〈Xi〉)2 = 1− (2p− 1)2 (1.4)

= 1− 4p2 + 4p− 1 = 4p(1− p). (1.5)

We now define a new random variable, Zn, as the sum of n such Xi

variables and this defines the distribution of the value of the random
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walk after n steps:

Zn =
n∑

i=1

Xi, n > 0. (1.6)

We can now look at some of the statistics of Zn, in particular the

average position, 〈Zn〉, and the variance: V ar[Zn] of this position:

〈Zn〉 = 〈
n∑

i=1

Xi〉 =
n∑

i=1

〈Xi〉 = n(2p− 1), n > 0. (1.7)

Since by definition each of the Xi’s are independent the second mo-

ment can be easily calculated,

〈Z2
n〉 = 〈(

n∑
i=1

Xi)
2〉 =

n∑
i=1

〈X2
i 〉+

n∑
i=1

n∑
j=1i�=j

〈XiXj〉 (1.8)

= n+ n(n− 1)(2p− 1)2. (1.9)

Hence,

V ar[Zn] = 〈Z2
n〉 − (〈Zn〉)2 = 4np(1− p). (1.10)

In particular, notice that

V ar[Zn] ∝ n, (1.11)

which gives us the result that the variance increases as we walk for more

steps. This has important consequences for finance as we shall see later.

Unbiased random walk

So far we have been considering a random walk with general transition

probabilities, p and q. The special case where p = q = 1/2 is called

unbiased – since each decision is equiprobable. For these random walks

the statistical properties collapse to

〈Zn〉 = 0, (1.12)

V ar[Zn] = 〈Z2
n〉 = n. (1.13)

From (1.13) we note that the root-mean-square of Zn is simply
√
n,

which hints that the average absolute distance moved after n steps,

E[| Zn |] = O(
√
n). This is indeed the case, but will not be proven here.

Trajectories for a collection of unbiased random walkers are shown in

Fig. 1.2.

A further interesting property of unbiased random walkers is the no-

tion of recurrence. Imagine we choose any point, i ∈ Z. How many times

would you expect the random walker to cross this point if the walker
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Self-organisation and emergence 5

could travel forever? Perhaps surprisingly the answer is that the walker

will cross any selected point an infinite number or times. From a finan-

cial perspective this property has been termed gambler’s ruin, since if

you are a gambler betting in a casino on a fair game then your cur-

rent wealth will evolve as a unbiased random walk and as such must

eventually cross 0. At this time you have lost all your money and the

“walk” cannot continue. All the casino has to do to force this win is to

have substantially more money than you (to absorb the periods where

you are winning) and entice you to keep on playing! It seems there is

wisdom in the adage “quit while you are ahead”.
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Figure 1.2 Recording the sequence of pairs (n,Zn) we can plot them
on the plane to generate the path of the random walker in time steps.
Here we see five unbiased walkers all starting from 0. Note that they
remain somewhat centred around 0 – which is what we expect from
the results derived in Section 1.1.2

1.1.3 Applications to finance

The simple one-dimensional random walk encountered so far has found

great application to finance. Financial forecasting has been labouring

under the so-called random walk hypothesis, which simply states that

stock market prices evolve over time as a random walk.

To see how this works, consider the log price, S = log (price) of an

asset or group of assets, along with ΔS0, some average price change

after a time period of Δt. Economic data suggests that for Δt > 30

seconds the random walk hypothesis seems valid, as we observe that the

correlation between successive prices (the autocorrelation) sampled

above this threshold is zero.
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6 Mario Nicodemi et al.

d p(d)

1 1
2 1
3 0.34
4 0.19
5 0.13
6 0.1

Table 1.1 Probabilities, p(d) of returning to the origin of a Zd random

walker initialised at the origin

Using historical price data you can estimate the value of p and ΔS0

and so obtain a random walker that behaves statistically like the histor-

ical data. If you carry out this analysis you will quickly discover that

your estimate for p will be approximately 0.5.

1.1.4 Random walks on Zd lattices

So far we have restricted our discussion to random walks that occur in

one dimension – that is there is only a choice to move left or right along

the integers. Formally this is a random walk on the lattice defined by Z.

An obvious way to extend the concept to higher dimensions is to allow

each dimension, d to have its own independent integer random walker,

such a random walker is said to walk on the lattice Zd. An example of

a multidimensional random walker is illustrated to two dimensions in

Fig. 1.3.

Interestingly not all members of this family of random walkers are

recurrent, which may be a little surprising given that they are built

from d independent random walks that are recurrent. In fact, for d > 2

no such random walks are recurrent. More formally, if we define p(d)

as the probability that the random walk on Zd starting at 0 will return

to 0 some time in the future then we can numerically calculate the

probabilities in Table 1.1.

1.1.5 Conformation of polymers

A polymer is a large macromolecule composed of repeating structural

units typically connected by covalent chemical bonds. Informally we can

consider a polymer of length L to be made up of n freely joined con-
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Figure 1.3 An unbiased random walk on Z2 for n = 1000, initialised
as the origin.

nected elastic rods of length l = L/n, where l is the persistence length

of the polymer. With this = L/n, where l is simplification in mind a

naive model of how free floating polymers arrange themselves in space is

suggested by a three-dimensional random walker of length n. This model

predicts that such a polymer would take up a region of space bounded

by a radius, R ∝ √n. Unfortunately, experimentalists disagreed with

the value predicted by the model. Instead of seeing R ∝ nυ with υ = 0.5

they were consistently measuring υ ≈ 0.6. The discrepancy between the

experimental value and the model prediction was resolved by the realisa-

tion that polymers obviously cannot self-intersect in the way a random

walker can return to previously visited states. A simple modification to

create the so-called self-avoiding random walker yields a value of υ ≈ 0.6

– which agrees much better with the experimental value.

The assumption that the polymer is free to float in space is not al-

ways valid. DNA for example can self-interact by forming bonds with

sites downstream of the molecule forming loop structures (Fig. 1.4). In-

troducing the possibility of such interactions into the model gives us our

first system that exhibits emergent behaviour and phase transitions. Let

E0 be the energy required to break a self-interacting bond, and let T be

the temperature of the environment. At higher temperatures, molecules

have more energy and it is easier for self-interacting bonds to be bro-

ken. We see that there is a “folding point” temperature above which

we have our usual free self-avoiding polymer, but below which we see

a polymer that is tightly packed together into a looped structure and

needs self-interactions to explain its behaviour (Fig. 1.5).
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Figure 1.4 Self-interaction of large molecules.

D
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Figure 1.5 Folding point.

This gives us our first important lesson: once we introduce interac-

tions into a model we must be prepared for emergent behaviour to take

hold; behaviour that would not be predicted by considering the indi-

vidual parts of the system alone without considering the interactions.

Interactions are the key.

1.2 Markov processes

Complex systems often exhibit behaviour which is extremely difficult

to quantitatively predict. Whilst initially this might seem problematic,

we can turn things to our advantage by constructing models based on

the apparent randomness. In the previous section we saw how random

walks may be used to model simple random processes. In this section

we discuss a more general class of models known as stochastic processes

and proceed to explore some of the ways in which these models have
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Self-organisation and emergence 9

been successfully used to describe scientific phenomena. In particular,

we will consider Markov processes within cellular biology, where these

stochastic models will provide us with a framework from which to derive

the dynamics of some prototypical biological systems.

1.2.1 Definitions

To begin with, we extend the random walk model introduced in the

previous section to encompass continuous time. Define a stochastic

process with state space χ to be a collection

{Y (t) : t ∈ T}

of χ-valued random variables indexed by t ∈ T. Here t is the general-

isation of the number of steps n taken by the random walk and may

be considered to represent some measure of time. Notice that the ran-

dom walks of the previous section correspond to the special case where

T = {0, 1, 2, . . . }. In this chapter we will explore the natural extension

to continuous time T = {t ∈ R : t ≥ 0}.
A stochastic process can be expressed in terms of its joint density

function

p((y1, t1), (y2, t2), . . . , (yn, tn)). (1.14)

Conversely, given a function p((y1, t1), . . . , (yn, tn)) how can we decide

if p defines a stochastic process? It can be shown that the following

constraints represent sufficient criteria:

(i) p((y1, t1), . . . , (yn, tn)) � 0 ∀ n, yj , tj

(ii) p(. . . , (yi, ti), . . . , (yj , tj), . . . ) = p(. . . , (yj , tj), . . . , (yi, ti), . . . )

∀ i 
= j

(iii) p((y1, t1), . . . , (yn−1, tn−1)) =
∫∫

p((y1, t1), . . . , (yn, tn))dyndtn

(iv)
∫∫

p(y1, t1)dy1dt1 = 1.

Many of the concepts which were introduced in the context of the

random walk can be naturally extended to continuous-time stochastic

processes. For example, we can define moments

〈Y (t1) · · ·Y (tn)〉 =
∫∫

y1 · · · ynp((y1, t1), . . . , (yn, tn))dy1 . . . dyn
(1.15)
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and covariances

K(t1, t2) = 〈(Y (t1)− 〈Y (t1)〉)(Y (t2)− 〈Y (t2)〉)〉 . (1.16)

An important concept in stochastic processes is stationarity. Specifi-

cally, we say that pS is a stationary distribution if for all τ > 0 we

have

pS((y1, t1 + τ), . . . , (yn, tn + τ)) = pS((y1, t1), . . . , (yn, tn)). (1.17)

We can think of a stochastic process given by a stationary distribution

pS as being in a time-independent steady state – the probability of an

event does not depend on when the event is scheduled to happen.

1.2.2 Markov property

We say that a stochastic process {Y (t) : t ∈ T} is a Markov process

if Y (t) has the property that

p((yn+1, tn+1)|(yn, tn), . . . , (y1, t1)) = p((yn+1, tn+1)|(yn, tn)), (1.18)

for all n and all pairs (y1, t1), . . . , (yn+1, tn+1), where the times t1 ≤ t2 ≤
· · · ≤ tn ≤ tn+1 form an increasing sequence. This is commonly known as

the Markov property. Intuitively it means that the stochastic process

is memoryless in the sense that the future behaviour (yn+1, tn+1) of

the process depends only on the present (yn, tn) and not on the past

(yn−1, tn−1), . . . , (y1, t1). This is a nice property because it allows us to

factorise p((yn+1, tn+1), . . . , (y0, t0)) as

p((yn+1, tn+1)|(yn, tn))× · · · × p((y1, t1)|(y0, t0))× p((y0, t0)), (1.19)

meaning that the entire process can be completely characterised by sim-

ply stating the function p((yn+1, tn+1)|(yn, tn)) and the initial distri-

bution p((y0, t0)). Notice that the random walks of the previous section

all obey the Markov property – the distribution of the next state Zn+1

depends only on the state Zn in which you happen to lie.

For the special case where n = 2 we have

p((y2, t2), (y1, t1), (y0, t0))= p((y2, t2)|(y1, t1))p((y1, t1)|(y0, t0))p((y0, t0)),
(1.20)

and integrating the equation over (y1, t1) produces

p((y2, t2), (y0, t0))

= p((y0, t0))

∫∫
p((y2, t2)|(y1, t1))p((y1, t1)|(y0, t0))dy1dt1. (1.21)
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