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Introduction to algebraic stacks

K. Behrend
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Abstract

These are lecture notes based on a short course on stacks given at the Isaac
Newton Institute in Cambridge in January 2011. They form a self-contained
introduction to some of the basic ideas of stack theory.
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Introduction

Stacks and algebraic stacks were invented by the Grothendieck school of
algebraic geometry in the 1960s. One purpose (see [11]) was to give geomet-
ric meaning to higher cohomology classes. The other (see [9] and [2]) was to
develop a more general framework for studying moduli problems. It is the lat-
ter aspect that interests us in this chapter. Since the 1980s, stacks have become
an increasingly important tool in geometry, topology and theoretical physics.

Stack theory examines how mathematical objects can vary in families. For
our examples, the mathematical objects will be the triangles, familiar from
Euclidean geometry, and closely related concepts. At least to begin with, we
will let these vary in continuous families, parametrized by topological spaces.

A surprising number of stacky phenomena can be seen in such simple cases.
(In fact, one of the founders of the theory of algebraic stacks, M. Artin, is
famously reputed to have said that one need only understand the stack of
triangles to understand stacks.)

This chapter is divided into three parts, Sections 1.1, 1.2, and 1.3. Section 1.1
is a very leisurely and elementary introduction to stacks, introducing the main
ideas by considering a few elementary examples of topological stacks. The
only prerequisites for this section are basic undergraduate courses in abstract
algebra (groups and group actions) and topology (topological spaces, covering
spaces, the fundamental group).

Section 1.2 introduces the basic formalism of stacks. The prerequisites are
the same, although this section is more demanding than the preceding one.

Section 1.3 introduces algebraic stacks, culminating in the Riemann—Roch
theorem for stacky curves. The prerequisite here is some basic scheme theory.
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We do not cover much of the “algebraic geometry” of algebraic stacks, but
we hope that these notes will prepare the reader for the study of more advanced
texts, such as [16] or the forthcoming book.!

The following outline uses terminology that will be explained in the body of
the text.

The first fundamental notion is that of a symmetry groupoid of a family of
objects. This is introduced first for discrete and then for continuous families of
triangles.

In Sections 1.1.1-1.1.3, we consider Euclidean triangles up to similarity (the
stack of such triangles is called 2t). We define what a fine moduli space is, and
show how the symmetries of the isosceles triangles and the equilateral triangle
prevent a fine moduli space from existing. We study the coarse moduli space
of triangles, and discover that it parametrizes a modular family, even though
this family is, of course, not universal.

Sections 1.1.4-1.1.6, introduce other examples of moduli problems. In
Section 1.1.4, we encounter a fine moduli space (the fine moduli space of
scalene triangles); in Section 1.1.5, where we restrict attention to isosceles
triangles, we encounter a coarse moduli space supporting several non-
isomorphic modular families. Restricting attention entirely to the equilat-
eral triangle, in Section 1.1.6, we come across a coarse moduli space that
parametrizes a modular family which is versal, but not universal.

In Section 1.1.7, we finally exhibit an example of a coarse moduli space
which does not admit any modular family at all. We start studying oriented
triangles. We will eventually prefer working with oriented triangles, because
they are more closely related to algebraic geometry. The stack of oriented
triangles is called M.

In Section 1.1.8, we first make a few general and informal remarks about
stacks and their role in the study of moduli problems.

The second fundamental concept is that of versal family. Versal families
replace universal families, where the latter do not exist. Stacks that admit versal
families are called geometric, which means topological in Sections 1.1 and 1.2,
but will mean algebraic in Section 1.3.

We introduce versal families in Section 1.1.9, and give several examples.
We explain how a stack which admits a versal family is essentially equal
to the stack of ‘generalized moduli maps’ (or torsors, in more advanced
terminology).

In Section 1.1.10, we start including degenerate triangles in our examina-
tions: triangles whose three vertices are collinear. The main reason we do this

' Contact Martin Olsson, www.math.berkeley.edu/~molsson.
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Introduction to algebraic stacks 5

is to provide examples of compactifications of moduli stacks. There are several
different natural ways to compactify the stack of triangles. There is a naive
point of view, which we dismiss rather quickly. We then explain a more inter-
esting and natural, but also more complicated, point of view: in this, the stack
of degenerate triangles turns out to be the quotient stack of a bipyramid mod-
ulo its symmetries, which form a group of order 12. This stack of degenerate
triangles is called 1.

We encounter a very useful construction along the way: the construction of
a stack by stackification, which means first describing families only locally,
then constructing a versal family, and then giving the stack as the stack of
generalized moduli maps to the universal family (or torsors for the symmetry
groupoid of the versal family).

We then consider oriented degenerate triangles and introduce the Legendre
family of triangles which is parametrized by the Riemann sphere. It exhibits
the stack of oriented degenerate triangles as the quotient stack of the Riemann
sphere by the action of the dihedral group with six elements. (In particular,
it endows the stack of oriented degenerate triangles with the structure of an
algebraic, not just topological, stack.) We call this stack £, and refer to it as
the Legendre compactification of the stack of oriented triangles .

The Legendre family provides the following illustration of the concept
of generalized moduli map (or groupoid torsor). We try to characterize, i.e.
completely describe, the similarity type of an (oriented, maybe degenerate) tri-
angle, by specifying the complex cross-ratio of its three vertices together with
the point at infinity. However, the cross-ratio is not a single-valued invariant,
but rather a multi-valued one: the six possible values of the cross-ratio are
acted upon by the group S3. Thus the stack £ of (oriented, maybe degenerate)
triangles is the quotient stack of the Riemann sphere divided by S3.

In Section 1.1.11, we explain how to relate different versal families for the
same stack with one another, and how to recognize two stacks as being essen-
tially the same, by exhibiting a bitorsor for the respective symmetry groupoids
of respective versal families. We apply this both ways: we exhibit two dif-
ferent versal families for “non-pinched” triangles and show how a bitorsor
intertwines them. Then we construct a bitorsor intertwining two potentially dif-
ferent moduli problems, namely two potentially different ways to treat families
containing “pinched” triangles, thus showing that the two moduli problems are
equivalent.

In Section 1.1.12, we introduce another compactification of the moduli stack
of oriented triangles, which we call the Weierstrass compactification, because
we construct it from the family of degree 3 polynomials in Weierstrass nor-
mal form. We denote this stack by 20. We encounter our first example of a
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Figure 1.1. Some of the stacks we encounter in these notes, and the morphisms
between them. Stacky points (coloured blue) are labeled with the order of their
isotropy groups.

non-trivial morphism of stacks, namely the natural morphism £ — 20. We
also introduce a holomorphic coordinate on the coarse moduli space of oriented
triangles known as the j-invariant.

In Section 1.2, we introduce the formalism of stacks. This will allow us to
discuss topological stacks in general, without reference to specific objects such
as triangles.

In Sections 1.2.1-1.2.4 we discuss the standard notions. We start with cate-
gories fibered in groupoids, which formalize what a moduli problem is. Then
come the prestacks, which have well-behaved isomorphism spaces, and allow
for the general definition of versal family. After a brief discussion of stacks, we
define topological stacks to be stacks that admit a versal family. We discuss the
basic fact that every topological stack is isomorphic to the stack of torsors for
the symmetry groupoid of a versal family. This also formalizes our approach
to stackification: start with a prestack, find a versal family, and then replace the
given prestack by the stack of torsors for the symmetry groupoid of the versal
family.

In Section 1.2.5 we discuss a new idea: symmetry groupoids of versal fam-
ilies should be considered as gluing data for topological stacks, in analogy
to atlases for topological manifolds. This also leads to the requirement that the
parameter space of a versal family should reflect the local topological structure
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of a stack faithfully, and, conversely, that a topological stack should locally
behave in a manner controlled by the parameter space of a versal family, in
order that we can “do geometry” on the stack.

This idea leads to the introduction of étale versal families, and the associated
stacks, which we call Deligne—Mumford topological stacks, in analogy with
the algebraic case. We prove a structure theorem that says that every separated
Deligne—-Mumford topological stack has an open cover by finite group quotient
stacks.

This shows that all “well-behaved”” moduli problems with discrete symmetry
groups are locally described by finite group quotients. Therefore, the seem-
ingly simple examples we start out with in fact turn out to be quite typical of
the general case.

We also encounter examples of moduli problems without symmetries, which
nevertheless do not admit fine moduli spaces. For sufficiently badly behaved
equivalence relations (when the quotient map does not admit local sections),
the quotient space is not a fine moduli space.

In Section 1.2.6, we continue our series of examples of moduli problems
related to triangles by considering lattices up to homothety. This leads to the
stack of elliptic curves, which we call €, and its compactification, . We see
another example of a morphism of stacks, namely & — 20, which maps a
lattice to the triangle of values of the Weierstrass gp-function at the half periods.
This is an example of a Z;-gerbe.

As an illustration of some simple “topology with stacks,” we introduce the
fundamental group of a topological stack in Section 1.2.7, and compute it for
some of our examples.

Section 1.3 is a brief introduction to algebraic stacks. The algebraic theory
requires more background than the topological one: we need, for example,
the theory of cohomology and base change. We will therefore assume that the
reader has a certain familiarity with scheme theory as covered in [15].

We limit our attention to algebraic stacks with affine diagonal. This avoids
the need for algebraic spaces as a prerequisite. For many applications, this is
not a serious limitation. As typical examples, we discuss the stack of elliptic
curves ¢ and its compactification €, as well as the stack of vector bundles on
a curve.

Our definition of algebraic stack avoids reference to Grothendieck topolo-
gies, algebraic spaces, and descent theory. Essentially, a category fibered in
groupoids is an algebraic stack if it is equivalent to the stack of torsors for an
algebraic groupoid. Sometimes, for example for &, we can verify this condi-
tion directly. We discuss a useful theorem, which reduces the verification that a
given groupoid fibration is an algebraic stack to the existence of a versal family,

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107636385
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-63638-5 - Moduli Spaces

Edited by Leticia Brambila-Paz, Oscar Garcia-Prada, Peter Newstead and Richard P. Thomas
Excerpt

More information

8 K. Behrend

with sufficiently well-behaved symmetry groupoid, and the gluing property in
the étale topology.

We include a discussion of the coarse moduli space in the algebraic context:
the theory is much more involved than in the topological case. We introduce
algebraic spaces as algebraic stacks “without stackiness.” We sketch the proof
that separated Deligne-Mumford stacks admit coarse moduli spaces, which are
separated algebraic stacks. As a by-product, we show that separated Deligne—
Mumford stacks are locally, in the étale topology of the coarse moduli space,
finite group quotients.

We then define what vector bundles and coherent sheaves on stacks are, giv-
ing the bundle of modular forms on € as an example. In a final Section 1.3.6,
we study stacky curves, and as an example of some algebraic geometry over
stacks we prove the Riemann—Roch theorem for orbifold curves. As an illus-
tration, we compute the well-known dimensions of the spaces of modular
forms.

1.1 Topological stacks: triangles

This section is directed at the student of mathematics who has taken an intro-
duction to topology (covering spaces and the fundamental group) and an
introduction to abstract algebra (group actions). Most of the formal mathe-
matics has been relegated to exercises, which can be skipped by the reader
who lacks the requisite background. The end of these exercises is marked with
the symbol “0.”

We are interested in two ideas, symmetry and form, and their role in
classification.

1.1.1 Families and their symmetry groupoids

Consider a mathematical concept, for example triangle, together with a notion
of isomorphism, for example similarity. This leads to the idea of symmetry.
Given an object (for example, an isosceles triangle)

a symmetry is an isomorphism of the object with itself (for example, the reflec-
tion across the “axis of symmetry”). All the symmetries of an object form a
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group, the symmetry group of the object. (The symmetry group of our isosceles
triangle is {id, refl}.)

To capture the essence of form, in particular how form may vary, we consider
families of objects rather than single objects (for example, the family of four

triangles

consisting of three congruent isosceles triangles and one equilateral triangle).

Definition 1.1. A symmetry of a family of objects is an isomorphism of one
member of the family with another member of the family.

Example 1.2. The family (1.1) of four triangles has 24 symmetries: there are
two symmetries from each of the isosceles triangles to every other (including
itself), adding up to 18, plus six symmetries of the equilateral triangle.

If we restrict the family to contain only the latter two isosceles triangles and

the equilateral triangle,

the family has 14 symmetries.

Various types of symmetry groupoids
Definition 1.3. The collection of all symmetries of a given family is called the
symmetry groupoid of the family.

Example 1.4. (Set) The symmetry groupoid of a family of non-isomorphic

asymmetric objects

consists of only the trivial symmetries, one for each object. Such a groupoid is
essentially the same thing as the set of objects in the family (or, more precisely,
the indexing set of the family).
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Example 1.5. (Equivalence relation) The symmetry groupoid of a family of
asymmetric objects

AAAMAA 4

is rigid. From any object to another there is at most one symmetry. A rigid
groupoid is essentially the same thing as an equivalence relation on the set of
objects (or the indexing set of the family).

Example 1.6. (Group) The symmetry groupoid of a single object

is a group.

Example 1.7. (Family of groups) The symmetry groupoid of a family of non-

isomorphic objects

Example 1.8. (Transformation groupoid) Consider again the family of trian-
gles (1.1) above, but now rearranged like this:

is a family of groups.

LV

This figure has dihedral symmetry, and so the dihedral group with six elements,
i.e. the symmetric group on three letters S3, acts on this figure. Each element
of S3 defines four symmetries of the family, because it defines a symmetry
originating at each of the four triangles.

For example, the rotation by 27” (or the permutation 1+—=3, 32,
2+ 1), gives rise to the 2?”—rotational symmetry of the equilateral triangle in
the center of the figure, as well as three isomorphisms, each from one isosceles

triangle to another.
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