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PREFACE

FTYHE author’s chief aim in writing this book was to give a systematic

account of certain applications of matrices, particularly of rectangular
matrices as distinguished from square matrices, and thereby to illustrate the
very great advantages gained by using them in almost all branches of
Mathematics. It originated in a habit of using matrices freely in the solu-
tion of problems in Algebra, Geometry and Applied Mathematics, and is
based on the very extensive manuscript acquired in doing so. To give a
satisfactory answer to the frequently propounded question ‘What is a
matrix ?’, it seemed advisable to commence with some account of the theory.
Accordingly the course of Readership Lectures in which this work was first
made public was divided into two halves, the first half dealing with the
theory, and the second half with the applications. The theoretical portion
has been constantly increased, in the first place by abstractions from the
applications, and in the second place by incorporating the work of other
writers. As a consequence the applications have been driven further back,
though they still remain the ultimate object of the book.

The first volume contained the foundations of a Calculus of Matrices in
which the operations are addition, subtraction and multiplication, and the
result of performing any number of these operations with any rectangular
matrices whatever is always a completely determinate matrix. It also
contained :

an account of the properties of the determinoid of a matrix, which
becomes the determinant of the matrix in the particular case when
the matrix is square;

an account of the solution of matrix equations of the first degree,
including as a special case the solution of systems of linear algebraic
equations;

a precise statement of the Law of Cancellation of matrix factors
in a matrix equation.

If we have an equation ab=0 in which @ and b are scalar numbers, then,
by the Law of Cancellation in Algebra, if either one of the two factors @ and
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vi PREFACE

b is not 0, it can be cancelled. The formulation of the corresponding Law
of Cancellation when a and b are matrices is very necessary for the applica-
tions, and was cssential to any advance in the general theory of rectangular
matrices. This Law of Cancellation is included as a particular case in the
important gencralisation of Chapter XV regarding the possible ranks of
a matrix product.

The continuation of the work has bcen grecatly hindered by untoward
circumstances, above all by the difficulty of obtaining sufficient leisure for
the final preparation of the manuscript for the press. On this account, and
because of the growth of the manuscript, it has been decided with reluctance
to publish as a second volume the first half of that portion of the complete
work which deals in greater detail with the Theory of Matrices. Accordingly
this second volume contains those parts of the theory which naturally pre-
cede any investigation of the special properties of functional matrices, i.c.
matrices whose elements are rational integral functions of a finite number of
variables. It deals almost exclusively with matrices whose elements are
constants, which may be arbitrary parameters, and with those transforma-
tions of such matrices which are classed as equigradent. It does not however
contain all the properties of such matrices. There remain many properties
which it will be more convenient to consider after a preliminary study of
functional matrices.

The language used in this volume is frequently geometrical, especially in
the later chapters. Any set of matrices which are vertically equivalent to
onc another are regarded as defining a * spacelet’ which is completely repre-
sented by any onc of them, usually by one which is undegenerate, the
spacelet being a ‘ point’ when the common rank of the matrices is 1. Any
property of a matrix which remains unaltered when the matrix is replaced
by any matrix vertically equivalent to it, is a property of a spacelet, and
conversely all properties of spacelets are properties of matrices. Although
these definitions are not geometrical, their geometrical interpretations, which
will be fully discussed in a later volume, are quite evident. We therefore
speak of ‘spacelets’ and points’ from the outset as if they were geometrical
concepts, and the chapters dealing with them will serve to lighten sub-
sequent chapters on the geometrical applications of matrices. In the
chapter on equigradent transformations it is shown that every such trans-
formation of a matrix whose elements are constants corresponds to a lincar
transformation of the variables in a bilinear or quadratic algebraic form; and
therefore everything in that chapter has an immediate algebraic application.
Thus although the present volume is avowedly restricted to the theory of
matrices, 1t actually contains a large number of geometrical applications, and
it also implicitly contains a large number of algebraic applications to which
attention will subsequently be directed.
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The geometrical applications which occur can be divided into two classes.
The first class contains properties which depend only on the notion of con-
nection, and are invariant in every equigradent (or projective) transformation
of the points of space. These include the rank of a spacelet, the paratomy
of two spacelets, and the relations between spacelets represented by the
terms tntersection and join and by the terms incident and connected. The
second class contains properties which depend on the notion of orthogonality,
and are invariant in every semi-unit transformation of the points of space,
Le. in every equigradent transformation which leaves the absolute quadric
unaltered. These include the extravagance of a spacelet, the orthotomy and
cross rank of two spacelets, and the relations between spacelets represented
by the terms core and plenum and by the terms orthogonal and normal.

It is often desirable to know what a general theorem concerning matrices
becomes in the special case in which the matrices are real. When the
theorem is one involving only rational operations on the elements of the
matrices, all reference to the special case is rendered unnecessary by enun-
ciating the general theorem for matrices whose elements lie in any domain
of rationality € ; for the special case is then obtained by simply taking Q to
be the domain of all real numbers. Since however the real domain has
special properties not possessed by other domains, there are special properties
of real matrices which cannot be obtained in this way.

In the figures which are given in some of the articles, spacelets and their
intersections are represented by areas. Such representations, though neces-
sarily very imperfect, can be used in simple cases as aids to the imagination.
It should particularly be noted that a shaded area always represents a com-
pletely extravagant spacelet, i.e. one which, being orthogonal with itself, is a
generating spacelet of the absolute quadric.

The references to Vol. 11 contained in Vol. 1 have been vitiated by the
alterations and re-arrangements of the text which have been made since
Vol. 1 was published; but a use of the Index will probably remove any
inconvenience caused by this.

As this work has been built up on an independent plan and based chiefly
on applications, it is for the most part not easy to ascribe definite sources to
the various articles or the suggestions for them. The following is a list of
the books which have had most influence on the work as a whole:

Bocher’s Introduction to Higher Algebra,

Heffter and Koehler's Lehrbuch der Analytischen Geometrie,
Muth’s Elementarteiler,

Netto’s Vorlesungen iiber Algebra,

Veronese’s Fondament di geometria a piu dimensions,
Whitehead’s Universal Algebra.
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My indebtedness to these and other writers will be more easily recognised
in those portions of the work, occurring chiefly in Vol. 111, which are inter-
polations in the original scheme. Amongst the few articles in the present
volume which admit of more detailed references may be mentioned § 120
which was written after reading the appendix in Heffter and Koehler’s
Analytische Geometrie, and § 159 which was written after reading a paper
by Schlafli in Crelle’s Journal for 1866 to which a reference is given in
Muth’s Elementarteiler. The addition of Appendix B was suggested by
reading a paper by Mr Haripada Datta in Vol. XXX1V of the Proceedings of
the Edinburgl Mathematical Society.

A few remarks are added concerning the contents of the individual
chapters.

Chapter XII (the first chapter of the present volume) contains the
notations for compound and compartite matrices, definitions of the primaries
of a minor determinant and of primary superdeterminants and primary sub-
determinants, a description of the elimination of a variable from a system of
inequalities, and the determination of the possible ranks of a matrix con-
taining a given minor matrix. The notations for compound matrices and
their determinoids are the complete generalisations of the notations used in

Vol. 1.

Chapter XIII deals with relations between the elements and minor
determinants of a matrix. Starting with the determination of the con-
nections between the short rows of an undegenerate matrix, we are led to all
the most useful relations, and these are finally seen to be all particular cases
of, or immediately deducible from, the fundamental identity of § 116. A
brief review of the relations and the reasons for their utility is given in
Appendix A ; and other summaries will be found in the Index under the
headings Relations, Standard identities, and Standard equations. Those of
the relations which are identities in the elements are of course applicable to
functional matrices.

Chapter XIV gives an account of some special properties of square
matrices. The earlier articles deal with the properties of two co-joint
complete matrices of the minor determinants of a square matrix, and the
later articles with symmetric and skew-symmetric matrices. Appendix B
should be read in conjunction with the articles on skew-symmetric matrices.

Chapter XV deals with the possible ranks of the product matrix and the
factor matrices in any matrix product. The theorem of § 183 and the final
results of §§ 185 and 137 constitute the complete generalisation of the Law
of Cancellation for matrices. In proving the latter results an indication is
given of methods of determining all solutions of any matrix equation of the
form X, X, ... X, =C. The concluding articles deal with the equivalences of
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PREFACE X

matrices, on which the definition of a spacelet is based, and with the joins,
intersections and connections of matrices and spacelets.

Chapter XVI deals with equigradent transformations of matrices, and
with the reduction of a matrix of given rank » whose elements are constants
to standard forms by equigradent transformations. The simplest standard
form is a similar matrix which is conventionally equal to the unit matrix

[1]:; and every matrix of rank » with constant elements can be derived from
the unit matrix [1]: by an equigradent transformation. The reductions of

symmetric and skew-symmetric matrices by symmetric equigradent trans-
formations receive special attention.

Chapter XVII deals with the solution of matrix equations of the second
degree. One of the most important results obtained in this chapter is the
general formula for all solutions of any assigned rank p of the symmetric

. /s m r m . . m . . . .
equation # [«] = a [a] inwhich [a] is a given matrix of rank ». The
—m S wm r ”

general theory of extravagant matrices is largely based on this result, which
leads at once to the reductions of the next chapter.

Chapter XVIII deals in the first place with the extravagances of any
matrix whose elements are constants, and with certain special kinds of equi-
gradent transformations, a review of which is given in Appendix C. The
result of which most use is made is the reduction of a matrix whose elements
are constants to a standard form by a unilaterally semi-unit equigradent trans-
formation. This reduction re-appears in the reduction of a matrix to an
equivalent undegenerate matrix whose long rows are mutually orthogonal, or
to one which is the join of a core and a semi-unit matrix ; in the corresponding
representations of a spacelet as a join of mutually orthogonal unconnected
points; and in the discussion of the properties of mutually normal unde-
generate matrices. Further it enables us to complete the discussion of the
unconnected mutually orthogonal solutions of any system of homogeneous
linear algebraic equations, which was left unfinished in Chapter XI.

Chapter XVIII deals in the second place with the extravagances of
spacelets and with semi-unit transformations of the points of space. The
extravagance of a spacelet (or the degree of its orthogonality with itself) is
that property of it which is next in importance to its rank. It is invariant
in every semi-unit transformation of the points of space, and can be interpreted
as being the rank of contact of the spacelet with the absolute quadric.
A spacelet which has the greatest extravagance consistent with its rank
is either completely extravagant or plenarily extravagant. A completely
extravagant spacelet is orthogonal with itself, and is thercfore a generating
spacelet of the absolute quadric; a plenarily extravagant spacelet contains all
points orthogonal with itself. With every spacelet is associated a completely

c 1L b
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extravagant spacelet, called its core, which is the locus of all points which
lie in the given spacelet and are orthogonal with it, i.e. the locus of the
points in which the given spacelet touches the absolute quadric; and a
plenarily extravagant spacelet, called its plenum, which is the smallest spacelet
containing the given spacelet and all points orthogonal with it. A sharp
distinction is drawn between mutually orthogonal spacelets and mutually
normal spacelets. A given spacelet has one and only one normal, whereas an
indefinite number of spacelets are orthogonal with it.

Chapter XIX deals chiefly with the mutual orthotomy of two spacelets,
or the degree of their mutual orthogonality. The most interesting results in
it are those relating to the greatest possible orthotomy of two spacelets. It
is shown that the mutual orthotomy of two arbitrary spacelets of given ranks
is greatest when each of them is incident with the normal to the other, i.e. in
that one of the two following mutually exclusive cases which is possible:

(1) when the two spacelets are mutually orthogonal; this being the
case when their complete intersection is a completely extravagant
spacelet ., and the spacelets are the joins of w, with two
mutually orthogonal non-intersecting spacelets lying in the plenum
of w,, 1.e. orthogonal with w,;

(2) when the normals to the two spacelets are mutually orthogonal ; this
being the case when the complete intersection of their normals is a
completely extravagant spacelet w,, and the normals are the joins
of w, with two mutually orthogonal non-intersccting spacelets lying
in the plenum of w,, i.e. orthogonal with w,.

Further it is shown that the mutual orthotomy of two spacelets of
given ranks which have a given complete intersection w, with core w, is
greatest in that one of the two following mutually exclusive cases which is
possible :

(1) when the two spacelets lie in the plenum of w, and are the joins of
w, with two mutually orthogonal non-intersecting spacelets ortho-
gonal with w,;

(2) when the normals to the two spacelets are mutually orthogonal ; this
being the case when the complete intersection w, of their normals
(whose rank « is known) lies in w,, and the normals are the joins of w,
with two mutually orthogonal non-intersecting spacelets orthogonal
with , (whose join is necessarily complementary to w. in the
normal to wy).

The corresponding simpler results for real spacelets are also given. Another
noteworthy result is the independence of the extravagances of two spacelets
of given ranks which have a given complete intersection. All the theorems
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of Chapter XIX can be applied to common metrical space Q,;; of n dimen-
sions when we define the paratomy and orthotomy of two spacelets of Q,.,
to be those of their infinite sub-spaces, i.e. those of their intersections with
the (homogeneous) infinite sub-space w, of Q4.

I owe many thanks to the authorities of the University of Calcutta who
have generously undertaken the publishing of this volume, and have now
with the sanction of the Governments of Bengal and India selected me as
Hardinge Professor of Mathematics in the University. In consequence of the
additional leisure thus secured to me from this time it is hoped that there
will be no long interval before the appearance of the third volume, completing
the theory of matrices and clearing the way for the applications. My special
gratitude is due to Sir Asutosh Mukhopadhyay for his stimulating interest
and encouragement.

Finally I desire to acknowledge my indebtedness to the officials and staff
of the Cambridge University Press for the very great care bestowed on the

printing.
C. E. CULLIS.
CALCUTTA,
February, 1918.
b2
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CORRIGENDA

Page 4, line 8: For “component”, read ‘ constituent”.
10: For “component”, read ‘constituent”.
» 89, ,,  2: Interchange the two extreme factors on the right of the equation.

y 94, ,, 7: For (A) , read (A’).

» 152, ,,  9: For “reciprocal” , read “conjugate reciprocal”.
» 182, ,, 10: For ‘“reciprocal” , read “conjugate reciprocal”.
» 176, ,,  1: For “matrix” , read “matrix equation”.

w 299, ,, 21: For “equigradent”, read “equigradent in the real domain”.

N.B. The space occupied by a matrix is counted as one line.
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