INDEX

abrupt climate change see climate change, abrupt changes
acid–alkaline (pH), of common substances 114 ocean 113–16, 128
Adler, Jerry 155
aerosols forcing 65 and geoengineering 208 and global temperature anomaly since 1880 37 impact on temperature 36–8
Africa, rainfall 77 Agassiz, Louis 92–3 air scrubbers 207 albedo of the Earth 38 forcing 65 Alice Springs, temperature variation 16–17 alternative energy 203–5, 209–10 Ammann, Caspar 149 Amundsen, Roald 173 animals, impact of climate change 200 anomaly see temperature anomaly
Australia in its Physiographic and Economic Aspects (Taylor) 83

Beck, Ernest 176
Beer's law 65, 68
Berner, R.A. 128
biochar 207
Bisson, Auguste-Rosalie 92
black carbon (soot) 36
boreholes 143
Bowling, D.R. 178
Bradley, Raymond 4, 177
Braithwaite, Roger 98
Bremer River (Qld) 87
Brisbane River (Qld), flooding 87
Broeker, Wally 170, 205, 206–7
Brown, Bob 85
Brown, H.T. 179
Bureau of Meteorology (Australia) climate stations 16
rainfall 75–6
temperature records 18, 22
bushfires 198–200
butterflies 14, 15
Caldeira, Ken 208
Callendar, Guy 55, 169, 179
Canada 78
Devon Island icecap 102
carbon cycle 159–61
carbon dioxide see atmospheric carbon dioxide
carbon emissions, need to reduce 170
carbon sequestration 205–7
carbon sinks 160–1
carbon storage 159–61
Carboniferous period 149
Carter, Bob 168–9, 174–81
cement production 158
Charlton, Andrew 204
cherry blossom time (Japan) 13
China, typhoons 81
chlorofluorocarbons (CFCs) 208
Church, John 112
climate and aerosols 36–8
and the Antarctic 45–6
atmosphere–land interactions 46–7
in Australia 26
distinguished from weather 26–7
and Earth’s orbit and axis 29–30
effect of atmosphere 35–6
effect of plant evolution 124–5
extra-terrestrial effects 35
impact of the Sun 30–5
methods of determining for geological past 125
ocean–atmosphere interactions 40–5
over past 400 million years 127–30
over past million years 130
proxies 142
record of natural variation 150
and reflection of Sun’s radiation 38–9
climate change abrupt changes 134–6
amplification 136–8
broad scientific consensus 169–70
causes in geological time 12
during 20th century 13–15
evidence for 13–15, 186–7
feedback 68, 138, 190
CO₂ 68, 124
greenhouse gases 136
ice melt 68, 124, 136
water vapour 64
historical records 12, 142
politics of 2
predictions about 2, 12, 187–95
radiative forcing 65
responding to 201–10
science of no change 168–70
speed of 12, 29, 98, 128, 134–6, 150
unprecedented rapid warming 150
see also global warming
climate cycles, recognition of 12
Climate Sceptics, the adversarial approach 3
claim for global cooling since 1998 3–4
climate science attacks by denialists 174
authenticity of reports 9
broad consensus 169
degree of reliability 5
explanation for rising temperature 4
reasons for denial of findings 173–4
reliability of data 21
climate sensitivity 190–1, 195
climate system, tipping points 195–7
Climate: The Counter Consensus (Carter) 174–81
Climategate affair 174
climatologists, accusations of malpractice 5–6
clouds and heat absorption 60–1
impact on local and global climate and water vapour 62–4
common brown butterfly (Victoria) 15
conduction in a greenhouse as a method of heat transfer 57
continental drift 7
convection in a greenhouse as a method of heat transfer 57
Cooper Creek 87, 88–9
Cooperative Research Centre for Greenhouse Gas Technologies 206
Copenhagen Conference (2009) 209
corals, impact of changing water temperatures 119–21, 201
cosmic rays 35
Cretaceous period 149
Crutzen, Paul 208, 209
Cyclone Larry (2006) 80
cyclones nomenclature 80 see also storms
Dalton Minimum 148
Darling River (NSW) 87–8
D’Arrigo, R. 144
Darwin, Charles 83
Delucchi, Mark 204
denialists, arguments of 170–83
Dessler, Andrew 63
Devon Island icecap 102
Devonian period 124
diatoms, impact of sunspots 31–2
Diz, Paula 147
Dome Fuji research station 132
Douglas, Bruce 111
drought in Australia 82–4, 90 and climate change in eastern Australia 85–6
definition 82
frequency 84–6
global trends since 1950 84–5
Palmer Drought Severity Index 83, 84–5
in Riverina district 83–4
Upper Colorado River region 84
Dyurgerov, Mark 96–7
Earth, the albedo of 38
balancing the heat 56–9
heat budget 60
increased heat loss and greenhouse effect 56
infra-red radiation 61–2
orbit, axis and climate 29–30
as a radiator 59
temperature of 52
Earthshine 59
spectrum of 60–1
Ehrelinger, J.R. 178
‘either/or’ theories 7
El Niño frequency of events 88
and Humboldt current 40–4, 45
impact in Australia 17, 40–4, 89
and ocean-atmosphere interaction 40–4, 45, 109–10
El Niño Southern Oscillation (ENSO) 41, 44, 88, 109
Elfstedentocht (skating race, Netherlands) 15
Douglas, Bruce 111
Enting, Ian 172
Escombe, F. 179
European Project for Ice Coring in Antarctica (EPICA) 131
Fangmeier, Andreas 198
feedback see climate change feedback
field naturalists’ clubs, records of springtime events 14
Fitter, Alastair 14
Fitter, R.S.R. 14
floods 86–9, 90
Fonselius, S. 179
forcing 65
fossil fuels emissions from 55, 156–8, 168–74, 179–80
increase in use 205
move away from 210
Frank, David 149
Franz Josef Glacier/Ka Roimata o Hinehukatere (NZ) 95
Free Air CO₂ Enrichment 197
FutureGen project 206
Gaia 203
Gall, E.J. 173
dominating 207–9
Gjermundsen, E.F. 95
glaciers see mountain glaciers
global cooling claims of Climate Sceptics 3–4
since 1998 176–7
global temperature 18–20
dominating various altitudes 22–3
evidence from ice cores 130–3
impact of aerosols and sunspots since 1880 37

INDEX

© in this web service Cambridge University Press www.cambridge.org
global temperature (cont.)
impact of increased water vapour 64
land-based measurements 18–19
measurement 16–20
reliability of data 21, 174–6
rise since the Industrial Revolution 52
sea-surface temperatures 19–20
trends in temperature records 21–2
world temperature anomaly distribution for 2011 20
world’s average temperature each month 23
global temperature variation and influencing factors 47–8
over past 12000 years 132–3
rate of natural temperature changes 133
global warming ‘anthropogenic global warming’ 21–3
and burning of fossil fuels 55, 156–8, 170–4, 179–80
contribution of Sun 34–5
different possible scenarios 191
effect on humans 196–7
evidence of 4–5, 13–15, 18–20, 23, 182
feedback loops 64, 68–9, 124, 136–8, 190–1
human-induced 169, 173–4
impact of El Niño Southern Oscillation (ENSO) 110, 188
implications of 197–202
and Keeling curve 55–6
and ‘known unknowns’ 194–5
political and social debate 12
projected impacts by 2100 194
projected impacts over next 20 years 194
rate of 98, 128, 133, 150, 187
role of greenhouse gases 181–2
temperature projections 188–9
theory of 9 and ‘unknown unknowns’ 195
Goddard Institute for Space Studies (NASA) 18–19, 189
Goyder, George 72, 82
Goyder’s Line 73
grape harvest (Burgundy) 13
Gravity Recovery and Climate Experiment satellite (GRACE) 101, 102
Great Barrier Reef 106, 116, 119, 120, 201
Great Ocean Conveyor Belt 40–1, 108, 135, 196
green-veined white butterfly 14
greenhouse effect 56
Greenhouse gases atmospheric concentration 55–6, 64
and global warming 181–2
and heat absorption 64–6
increase since Industrial Revolution 52
misconceived notion of operation 57–9
role of 56–7
stabilisation of 195
water vapour feedback loop 64
greenhouse signature 181–2
greenhouses, operation of 58–9
Greenland icecap 102–3
Guntun, L. von 149
Halloran, PR 117
halocarbons, forcing 65
Hansen, James 18–19, 170, 188–9, 195, 200
heat 108
heat transfer methods 57
heat wave (weather) 129, 191, 194
heat waves (radiation) 58
Heaven and Earth. Global Warming: The Missing Science (Plimer) 3, 170–4
Hemmingway, Ernest 93
Hideaki Motoyama 132
Himalayas, mountain glaciers 96
hindcasting 188–9
‘Hockey Stick’ temperature graph 4–5, 53, 133, 148–9, 177
Hoetzle, M. 95
Hoffman, Paul 124
Hog, Petra 198
Huang, S. 143
Hug, Heinz 61
Hughes, Malcolm 4, 177
Humboldt current 40–1
Huxley, Thomas 61
ice, sublimation 93
ice ages, causes of 56, 57, 130
ice cores 130–3, 146
ice, loss of 94–103, 191
Iglesias-Rodriguez, M.D. 117
Indian Ocean Dipole 45, 88
Industrial Revolution and atmospheric CO₂ 156, 158, 164
and increase of greenhouse gases 52
infra-red radiation 61–2
insect behaviour, changes in 14
Intergovernmental Panel on Climate Change (IPCC)
attacks by climate change sceptics 168–9, 174
and collective view of climate scientists 169
evaluation of forcings 65
on Himalayan glaciers 96
predictions about rise in global sea-surface temperature 3
sea-surface temperature data 19
International Radiation Investigation Satellite (IRIS) 56
isotopes 81–2
carbon 81, 155, 179
hydrogen 81, 131
oxygen 82, 131–2
of seashells 125
ivy-leaved toadflax 15
Jacobsen, Mark 204
Japan, cherry blossom time 13
Japanese Meteorological Agency 18
Jones, P.D. 21, 170, 177
Ka Roimata o Hinehukatere/Franz Josef Glacier (NZ) 95
Keeling, C.D. 53–4, 155, 178
Keeling curve 53–6
Keeling, Ralph 157, 178
Krigwin, Lloyd 147
Kerr, Richard 208
Kirschvink, Joe 124
Kouwenberg, L. 149
Kuffner, Ilsa 116
La Niña and Humboldt Current 40–4
impact in Australia 34, 40–4, 88, 89
and ocean-atmosphere interaction 40–4, 45, 109–10
Lake Agassiz 135
Lake Eyre 87, 88–9
land, as a carbon sink 160–1
land clearing 46–7, 158
Larsen, Henry 173
Le Hir, Guillaume 124
Leakey, Andrew 198
Lean, Judith 34
Lindzen, Richard 192
Linsley, Braddock 44
Little Ice Age 12, 98, 142, 143, 144, 146, 147–8, 149
Lockwood, M. 34, 188–9
Lockyer River (Qld) 87
Lovelock, James 203
Lower Aar Glacier 92
Lower Grindelwald Glacier 92, 93
McIntyre, Steve 148–9
McKitrick, Ross 148–9
Mann, Michael 147–9, 170, 177
marine organisms and acidification of the ocean 116–19
consequences of changing water temperature 119–21
Maunder Minimum 148
Mayewski, P.A. 45–6, 98
Medieval Warm Period 143, 144, 146, 147–8, 149
Meier, Mark 96–7
methane atmospheric concentration 55, 64, 138, 196
forcing 59, 60
and greenhouse effect sources of 161–4
methane ice 163–4
Milankovíc curve 130–1, 142
Milankovíc cycles 28–31, 130, 137, 147, 150
Milankovíc, Milutin 29
Miskolci, Ferenc 60–1
Mississippi River (US) 78
Mölg, Thomas 95
Molina, Mario 208
Monckton, Christopher 3
Montreal protocol 210
mountain glaciers advances and retreats 98
global retreat 95–6
in Himalayas 96
impact of melting on sea levels 97, 112, 190
loss of ice 1960–2005 96–8
Mt Kilimanjaro 93–5
in New Zealand 95–6
snout ‘retreat’ 93
susceptibility to temperature changes 93
in Switzerland 92–3
Mt Kilimanjaro 93–5
Murray River 26, 75
inflow from floods 87
National Aeronautics and Space Administration (NASA) 18–19
natural gas energy 210
nature, evidence of global warming 13–15
Netherlands, the, Elfstedentocht skating race 15
New Zealand, mountain glaciers 95–6
nitrous oxide 64, 65, 66
North Atlantic Oscillation 42, 148
Northwest Passage (Canada) 173
Nott, Jon 81
Nova, Joanne 181–2
nuclear power 203–4
ocean chemistry 113–15
ocean Conveyor Belt 40–1
ocean currents and atmosphere-ocean interactions 40–1
heat exchange 40
impact in Pacific Ocean 40–4
impact on weather in Europe, North America and the Arctic 42
as a tipping point 196
ocean temperature atmospheric CO₂ and global warming 68
changes in upper 700 metres since 1961 108–9
and ENSO fluctuations since 1960 110
heat exchange with atmosphere 109–10
heat storage 108–10
increase in 109 over past 65 million years 128–9
in the past 82
see also sea-surface temperature
ocean, the
as a carbon sink 160–1, 195
impact on climate and weather 106–8
increase in acidity 113, 115–19
as a source of atmospheric CO₂ 180
Ohio State University, Byrd Polar Research Center 94
oxygen levels 138, 157
ozone forcing 65
heat absorption 66
UV absorption 27
ozone depletion 208, 210
Pacific Decadal Oscillation 44, 116
Pacific Ocean, sea-surface temperatures 43
Palmer Drought Severity Index 83, 84–5
Pangaea 8
Park, Jeffery 195
Paroo River 87, 88–9
Pataki, DE 178
permafrost 99
pH 113–6
Piechota, T. 84
plant behaviour, changes 13, 14–15
plant evolution 124–5
plants
impact of global warming 197–8
weather and climate 72–3
plate tectonics
see continental drift
Pleocene–Eocene
Thermal Maximum 128
Plimer, Ian 3, 168, 170–4
polar icecaps and sea-ice
Antarctic ice sheet 100–2, 103
Arctic 99–100
Devon Island icecap 103
Greenland icecap 42
impact of melting 68, 196
politics of climate change 2
Polyakov, I.V. 176–7
Post, David 85
Pryzbylak, Rajmund 173–4
pteropods 117–18, 201–10
radiant heat, wavelengths 57–8
radiation 57, 59
radiative forcing 65
Rahmstorf, Stefan 200
rainfall in Canada 78
changes across globe 1951–2000 78–9
long-term trends in Australia 75–6, 89
projections for global precipitation 192
relationship to temperature change 79
and river flow 75
in the Sahel 75–7
trends 75–9
in Tunisia 72
at Victoria River Station 74
in Wagga Wagga 73–4
in Wilgarup 74
in Yukon River Basin 78
see also drought; storms
Ramankutty, Navin 42
Raper, Sarah 98
Rayleigh scattering 36
Ricke, Katherine 209
Riebessell, U. 117
river flows
impact of reduced rainfall 75
into Arctic Ocean 99
trends 78
Riverina district, drought 83–4
Rowland, Sherwood 208
Royer, D. 127
Sahel, climate change 75
scepticism, and science 2–3
sceptics 2–4
Schellnhuber, John 202
Schlesinger, Michael 42
Schrag, Daniel 124

INDEX
temperature variation
Alice Springs 16–17
in northern Europe
over past 9000 years
133
over past 2000 years
146
Wagga Wagga
16–17
world temperature
anomaly
distribution for
2011 20
temperatures
data on global changes
16
over the past 2000
years 142
since 1880 15–17
Thames River, freezing
of 142
thermohaline 196
Thompson, L.G. 94–5, 146
tree rings 143–4
Tropospheric Emission
Spectrometer (TES)
satellite 56
Tunisia, record rainfall 72
Tyndall, John 57
typhoons, in China 81
UK Meteorological
Office, Hadley Centre
19, 37
Ummenhofer, Caroline
83–4
UN Convention on the
Law of the Sea 106
University of Colorado, 96
Institute of Arctic and
Alpine Research
University of East Anglia,
Climatic Research Unit
(CRU) 19, 37
University of Innsbruck,
Tropical Glacier Group
95
Upper Colorado River,
average rainfall 84
‘urban heat-island effect’
15, 21
US National Climatic
Data Center, world’s
average temperature
each month 23
varves 144–5
Veizer, Jan 128, 136
Victoria River Station
(NT), rainfall 74
Vostock Research Station
(Antarctica) 131
Wagga Wagga (NSW),
average rainfall 73–4
Wagga Wagga, temperature
variation 16–17
Wahl, Eugene 149
Walker Circulation 42
Warrego River 87, 88–9
water vapour
and clouds 62–4
effects of increasing
concentration 64–5
greenhouse effect 68
and heat absorption
56–7, 59, 60–1, 64
impact of increase on
global temperature
64
increase in amounts
over oceans 64
variations in relative
humidity 63
weather, distinguished
from climate 26–7
Wegener, Alfred 7
white deadnettle 15
Wigley, T.M.L. 21, 170,
208, 209, 210
Wilgarup (WA), rainfall
74
wind energy 204, 205
Wood, Lowell 208
Woolf, Dominic 207
Yellowstone River (US)
78
Younger Dryas 134–5
Yukon River Basin,
rainfall 78
Zachos, James 128