
Prologue:
General Remarks on Computer Algebra Systems

Computer algebra algorithms allow us to compute in, and with, a multitude
of mathematical structures. Accordingly, there is a large number of computer
algebra systems suiting different needs, ranging from the general to the special
purpose. Some well-known examples of the former are commercial, whereas
many of the special purpose systems are open-source and can be downloaded
from the internet for free. General purpose systems aim at providing basic
functionality for a variety of different application areas. In addition to tools for
symbolic computation, they usually offer tools for numerical computation and
for visualization.

Example P.1 MAPLE is a commercial general purpose system. To show a
few of its commands at work, we start with examples from calculus, namely
definite and indefinite integration:

> int(sin(x), x = 0 .. Pi);

2

> int(x/(x^2-1), x);

1/2 ln(x - 1) + 1/2 ln(x + 1)

For linear algebra applications, we first load the corresponding package. Then
we demonstrate how to perform Gaussian elimination and to compute eigen-
values.

with(LinearAlgebra);

A := Matrix([[2, 1, 0], [1, 2, 1], [0, 1, 2]]);⎡⎢⎢⎣
2 1 0

1 2 1

0 1 2

⎤⎥⎥⎦
GaussianElimination(A);

1
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2 Prologue: General Remarks on Computer Algebra Systems⎡⎢⎢⎣
2 1 0

0 3/2 1

0 0 4/3

⎤⎥⎥⎦
Eigenvalues(A); ⎡⎢⎢⎣

2

2−√
2

2+
√

2

⎤⎥⎥⎦
Next, we give an example of solving numerically1:

> fsolve(2*x^5-11*x^4-7*x^3+12*x^2-4*x = 0);

-1.334383488, 0., 5.929222024

Finally, we show one of the graphic functions at work:

> plot3d(x*exp(-x^2-y^2),x = -2 .. 2,y = -2 .. 2,grid = [49, 49]);

For applications in research, general purpose systems are often not powerful
enough: The implementation of the required basic algorithms may not be opti-
mal with respect to speed and storage handling, and more advanced algorithms
may not be implemented at all. Many special purpose systems were created
by people working in a field other than computer algebra: they had a desperate
need for computing power in the context of some of their research problems. A
pioneering and prominent example is Veltman’s SCHOONSHIP which helped
to win a Nobel price in physics in 1999 (awarded to Veltman and t’Hooft ‘for
having placed particle physics theory on a firmer mathematical foundation’).

1 Note that only the real roots are computed.
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Prologue: General Remarks on Computer Algebra Systems 3

Example P.2 GAP is a free open-source system for computational discrete
algebra, with particular emphasis on Computational Group Theory. In the fol-
lowing GAP session, we define a subgroup G of the symmetric group S11 (the
group of permutations of {1, . . . ,11}) by giving two generators in cycle2 no-
tation. We check that G is simple (that is, its only normal subgroups are the
trivial subgroup and the whole group itself). Then we compute the order |G| of
G, and factorize this number:

gap> G := Group([(1,2,3,4,5,6,7,8,9,10,11),(3,7,11,8)(4,10,5,6)]);

Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6)])

gap> IsSimple(G);

true

gap> size := Size(G);

7920

gap> Factors(size);

[ 2, 2, 2, 2, 3, 3, 5, 11 ]

From the factors, we see that G has a Sylow 2-subgroup3 of order 24 = 16. We
use GAP to find such a group P:

gap> P := SylowSubgroup(G, 2);

Group([(2,8)(3,4)(5,6)(10,11), (3,5)(4,6)(7,9)(10,11),

(2,4,8,3)(5,10,6,11)])

By making use of the Small Groups Library included in GAP, we can check
that, up to isomorphism, there are 14 groups of order 16, and that P is the 8th
group of order 16 listed in this library:

gap> SmallGroupsInformation(16);

There are 14 groups of order 16.

They are sorted by their ranks.

1 is cyclic.

2 - 9 have rank 2.

10 - 13 have rank 3.

14 is elementary abelian.

gap> IdGroup( P );

[ 16, 8 ]

Now, we determine what group P is. First, we check that P is neither Abelian
nor the dihedral group of order 16 (the dihedral group of order 2n is the sym-
metry group of the regular n-gon):

2 The cycle (4,10,5,6), for instance, maps 4 to 10, 10 to 5, 5 to 6, 6 to 4, and any other number
to itself.

3 If G is a finite group, and p is a prime divisor of its order |G|, then a subgroup U of G is called
a Sylow p-subgroup if its order |U | is the highest power of p dividing |G|.
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4 Prologue: General Remarks on Computer Algebra Systems

gap> IsAbelian(P);

false

gap> IsDihedralGroup(P);

false

More information about P can be obtained by studying the subgroups of P of
order 8. In fact, we consider the third such subgroup returned by GAP and
name it H:

gap> H := SubgroupsOfIndexTwo(P)[3];

Group([(2,3,11,5,8,4,10,6)(7,9), (2,4,11,6,8,3,10,5)(7,9),

(2,5,10,3,8,6,11,4)(7,9), (2,6,10,4,8,5,11,3)(7,9)])

gap> IdGroup(H);

[ 8, 1 ]

gap> IsCyclic(H);

true

Thus, H is the cyclic group C8 of order 8 (cyclic groups are generated by just
one element). Further checks show, in fact, that P is a semidirect product of
C8 and the cyclic group C2. See Wild (2005) for the classification of groups of
order 16.

Remark P.3 The group G studied in the previous example is known as the
Mathieu group M11. We should point out that researchers in group theory and
representation theory have created quite a number of useful electronic libraries
such as the Small Groups Library considered above.

Example P.4 MAGMA is a commercial system focusing on algebra, num-
ber theory, geometry and combinatorics. We use it to factorize the 8th Fermat
number:

> Factorization(2^(2^8)+1);

[<1238926361552897,1>,

<93461639715357977769163558199606896584051237541638188580280321,1>]

Next, we meet our first example of an algebraic set: In Weierstraß normal form,
an elliptic curve over a field K is a nonsingular4 curve in the xy-plane defined
by one polynomial equation of type

y2 +a1xy+a3y− x3 −a2x2 −a4x−a6 = 0,

with coefficients ai ∈K. In the following MAGMA session, we define an elliptic

4 Informally, a curve is nonsingular if it admits a unique tangent line at each of its points. See,
for instance, Silverman (2009) for a formal definition and for more information on elliptic
curves.
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Prologue: General Remarks on Computer Algebra Systems 5

curve E in Weierstraß normal form over the finite field F with 590 elements by
specifying the coefficients ai. Then we count the number of points on E with
coordinates in F .

F := FiniteField(5,90);

E := EllipticCurve([Zero(F),Zero(F),One(F),-One(F),Zero(F)]);

E;

Elliptic Curve defined by y^2 + y = x^3 + 4*x over GF(5^90)

#E;

807793566946316088741610050849537214477762546152780718396696352

The significance of elliptic curves stems from the fact that they carry an (addi-
tive) group law. Having specified a base point (the zero element of the group),
the addition of points is defined by a geometric construction involving secant
and tangent lines. For elliptic curves in Weierstraß normal form, it is conve-
nient to choose the unique point at infinity of the curve as the base point (see
Section 1.2.1 for points at infinity and Example P.6 below for a demonstration
of the group law).

Remark P.5 Elliptic curves, most notably elliptic curves defined over Q re-
spectively over a finite field, are of particular importance in number theory.
They take center stage in the conjecture of Birch and Swinnerton-Dyer (1965)
5, they are key ingredients in the proof of Fermat’s last theorem Wiles (1995),
they are important for integer factorization Lenstra (1987), and they find appli-
cations in cryptography Koblitz (1987). As with many other awesome conjec-
tures in number theory, the Birch and Swinnerton-Dyer conjecture is based on
computer experiments.

Example P.6 SAGE is a free open-source mathematics software system which
combines the power of many existing open-source packages into a common
PYTHON-based interface. To show it at work, we start as in Example P.1 with
computations from calculus. Then, we compute all prime numbers between
two given numbers.

sage: limit(sin(x)/x, x=0)

1

sage: taylor(sqrt(x+1), x, 0, 5)

7/256*x^5 - 5/128*x^4 + 1/16*x^3 - 1/8*x^2 + 1/2*x + 1

sage: list(primes(10000000000, 10000000100))

[10000000019, 10000000033, 10000000061, 10000000069, 10000000097]

Finally, we define an elliptic curve E in Weierstraß normal form over Q and

5 The Birch and Swinnerton-Dyer conjecture asserts, in particular, that an elliptic curve E over
Q has an infinite number of points with rational coordinates iff its associated L-series satisfies
L(E,1) = 0.
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6 Prologue: General Remarks on Computer Algebra Systems

demonstrate the group law on this curve. The representation of the results takes
infinity into account in the sense that the points are given by their homogeneous
coordinates in the projective plane (see Section 1.2 for the projective setting).
In particular, (0 : 1 : 0) denotes the unique point at infinity of the curve which
is chosen to be the zero element of the group.

sage: E = EllipticCurve([0,0,1,-1,0])

sage: E

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: P = E([0,0])

sage: P

(0 : 0 : 1)

sage: O = P - P

sage: O

(0 : 1 : 0)

sage: Q = E([-1,0])

sage: Q

(-1 : 0 : 1)

sage: Q + O

(-1 : 0 : 1)

sage: P + Q - (P+Q)

(0 : 1 : 0)

Q + (P + R) - ((Q + P) + R)

(0 : 1 : 0)

Among the systems combined by SAGE are MAXIMA, a general purpose sys-
tem which is free and open-source, GAP, the system introduced in Example
P.2, PARI/GP, a system for number theory, and SINGULAR, the system fea-
tured in these notes.

SINGULAR is a free open-source system for polynomial computations, with
special emphasis on commutative and noncommutative algebra, algebraic ge-
ometry, and singularity theory. Like most other systems, SINGULAR consists
of a precompiled kernel, written in C/C++, and additional packages, called li-
braries and written in the C-like SINGULAR user language. This language is in-
terpreted on runtime. SINGULAR binaries are available for most common hard-
ware and software platforms. Its release versions can be downloaded through
ftp from

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/
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Prologue: General Remarks on Computer Algebra Systems 7

or via your favorite web browser from SINGULAR’s webpage

http://www.singular.uni-kl.de/ .

SINGULAR also provides an extensive online manual and help function. See
its webpage or enter help; in a SINGULAR session.

Most algorithms implemented in SINGULAR rely on the basic task of com-
puting Gröbner bases. Gröbner bases are special sets of generators for ideals in
polynomial rings. Their definition and computation is subject to the choice of
a monomial ordering such as the lexicographical ordering >lp and the degree
reverse lexicographical ordering >dp. We will treat Gröbner bases and their
computation by Buchberger’s algorithm in Chapter 2. SINGULAR examples,
however, will already be presented beforehand.

SINGULAR Example P.7 We enter the polynomials of the system

x+ y+ z−1 = 0
x2 + y2 + z2 −1 = 0
x3 + y3 + z3 −1 = 0

in a SINGULAR session. For this, we first have to define the corresponding
polynomial ring which is named R and endowed with the lexicographical or-
dering. Note that the 0 in the definition of R refers to the prime field of charac-
teristic zero, that is, to Q.

> ring R = 0, (x,y,z), lp;

> poly f1 = x+y+z-1;

> poly f2 = x2+y2+z2-1;

> poly f3 = x3+y3+z3-1;

Next, we define the ideal generated by the polynomials and compute a Gröbner
basis for this ideal (the system given by the Gröbner basis elements has the
same solutions as the original system).

> ideal I = f1, f2, f3;

> ideal GI = groebner(I); GI;

GI[1]=z3-z2

GI[2]=y2+yz-y+z2-z

GI[3]=x+y+z-1

In the first equation of the new system, the variables x and y are eliminated.
In the second, x is eliminated. As a consequence, the solutions can now be
directly read off:

(1,0,0), (0,1,0), (0,0,1).
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8 Prologue: General Remarks on Computer Algebra Systems

The example indicates that >lp is what we will call an elimination ordering.
If such an ordering is chosen, Buchberger’s algorithm generalizes Gaussian
elimination. For most applications of the algorithm, however, the elimination
property is not needed. It is, then, usually more efficient to choose the ordering
>dp.

Multivariate polynomial factorization is another basic task on which some of
the more advanced algorithms in SINGULAR rely. Starting with the first com-
puter algebra systems in the 1960s, the design of algorithms for polynomial
factorization has always been an active area of research. To keep the size of
our notes within reasonable limits, we will not treat this here. We should point
out, however, that algorithms for polynomial factorization do not depend on
monomial orderings. Nevertheless, choosing such an ordering is always part
of a ring definition in SINGULAR.

SINGULAR Example P.8 We factorize a polynomial in Q[x,y,z] using the
SINGULAR command factorize. The resulting output is a list, with the fac-
tors as the first entry, and the corresponding multiplicities as a second.

> ring R = 0, (x,y,z), dp;

> poly f = -x7y4+x6y5-3x5y6+3x4y7-3x3y8+3x2y9-xy10+y11-x10z

. +x8y2z+9x6y4z+11x4y6z+4x2y8z-3x5y4z2+3x4y5z2-6x3y6z2+6x2y7z2

. -3xy8z2+3y9z2-3x8z3+6x6y2z3+21x4y4z3+12x2y6z3-3x3y4z4+3x2y5z4

. -3xy6z4+3y7z4-3x6z5+9x4y2z5+12x2y4z5-xy4z6+y5z6-x4z7+4x2y2z7;

> factorize(f);

[1]:

_[1]=-1

_[2]=xy4-y5+x4z-4x2y2z

_[3]=x2+y2+z2

[2]:

1,1,3

Remark P.9 In recent years, quite a number of the more abstract concepts
in algebraic geometry have been made constructive. They are, thus, not only
easier to understand, but can be handled by computer algebra. A prominent
example is the desingularization theorem of Hironaka (see Hironaka (1964))
for which Hironaka received the Fields Medal. In fact, Villamajor’s construc-
tive version of Hironaka’s proof has led to an algorithm whose SINGULAR

implementation allows us to resolve singularities in many cases of interest (see
Bierstone and Milman (1997), Frühbis-Krüger and Pfister (2006), Bravo et al.
(2005)).

When studying plane curves or surfaces in 3-space, it is often desirable to
visualize the geometric objects under consideration. Excellent tools for this are
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Prologue: General Remarks on Computer Algebra Systems 9

SURF and its descendants SURFEX6 and SURFER7. Comparing these, we note
that SURFEX has more features, whereas SURFER is easier to handle.

Example P.10 The following SURFER picture shows a surface in 3-space
found by Oliver Labs using SINGULAR (see Labs (2006)):

SINGULAR Example P.11 We set up the equation of Labs’ surface in SIN-
GULAR. The equation is defined over a finite extension field of Q which we
implement by entering its minimal polynomial:

> ring R = (0,a), (x,y,w,z), dp;

> minpoly = a^3 + a + 1/7;

> poly a(1) = -12/7*a^2 - 384/49*a - 8/7;

> poly a(2) = -32/7*a^2 + 24/49*a - 4;

> poly a(3) = -4*a^2 + 24/49*a - 4;

> poly a(4) = -8/7*a^2 + 8/49*a - 8/7;

> poly a(5) = 49*a^2 - 7*a + 50;

> poly P = x*(x^6-3*7*x^4*y^2+5*7*x^2*y^4-7*y^6)

. +7*z*((x^2+y^2)^3-2^3*z^2*(x^2+y^2)^2

. +2^4*z^4*(x^2+y^2))-2^6*z^7;

> poly C = a(1)*z^3+a(2)*z^2*w+a(3)*z*w^2+a(4)*w^3+(z+w)*(x^2+y^2);

> poly S = P-(z+a(5)*w)*C^2;

> homog(S); // returns 1 if poly is homogeneous

1

> deg(S);

7

We see that S is a homogeneous polynomial of degree 7. It defines Labs’ sur-

6 http://surf.sourceforge.net
7 http://www.oliverlabs.net/welcome.php
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10 Prologue: General Remarks on Computer Algebra Systems

face in projective 3-space. This surface is a ‘world record’ surface in that it
has the maximal number of nodes known for a degree-7 surface in projective
3-space (a node constitutes the most simple type of a singularity). We use SIN-
GULAR to confirm that there are precisely 99 nodes (and no other singularities).

First, we compute the dimension of the locus of singularities via the Jacobian
criterion (see Decker and Schreyer (2013) for the criterion and Sections 1.1.8
and 2.3 for more on dimension):

> dim(groebner(jacob(S)))-1;

0

The result means that there are only finitely many singularities. By checking
that the nonnodal locus is empty, we verify that all singularities are nodes.
Then, we compute the number of nodes:

> dim(groebner(minor(jacob(jacob(S)),2))) - 1;

-1

> mult(groebner(jacob(S)));

99

SINGULAR Example P.12 When properly installed, SURF, SURFEX, and
SURFER can be called from SINGULAR. To give an example, we use SURFER

to plot a surface which, as it turns out, resembles a citrus fruit. To begin, we
load the SINGULAR library connecting to SURF and SURFER.

> LIB "surf.lib";

> ring R = 0, (x,y,z), dp;

> ideal I = 6/5*y^2+6/5*z^2-5*(x+1/2)^3*(1/2-x)^3;

surfer(I);

The resulting picture will show in a pop-up window:

See http://www.imaginary-exhibition.com for more pictures.
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