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An Overview

This chapter gives an overview of the entire book. Since our focus turns

directly to wavelets only in Chapter 5, about halfway through, beginning with

an overview is useful because it enables us early on to convey an idea of what

wavelets are and of the mathematical setting within which we will study them.

The idea of the orthonormality of a collection of vectors, together with

some closely related ideas, is central to the chapter. These ideas should be

familiar at least in the finite-dimensional Euclidean spaces Rn (and certainly

in R2 and R3 in particular), but after revising the Euclidean case we will go on

to examine the same ideas in certain spaces of infinite dimension, especially

spaces of functions. In many ways, the central chapters of the book constitute a

systematic and general investigation of these ideas, and the theory of wavelets

is, from one point of view, an application of this theory.

Because this chapter is only an overview, the discussion will be rather

informal, and important details will be skated over quickly or suppressed

altogether, but by the end of the chapter the reader should have a broad idea of

the shape and content of the book.

1.1 Orthonormality in Rn

Recall that the inner product 〈a, b〉 of two vectors
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and b =
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2 1 An Overview

in Rn is defined by

〈a, b〉 = a1b1 + a2b2 + · · · + anbn =

n
∑

i=1

aibi.

Also, the norm ‖a‖ of a is defined by

‖a‖ =
√

a2
1
+ a2

2
+ · · · + a2

n =

( n
∑

i=1

a2
i

)
1
2

= 〈a, a〉
1
2 .

➤ A few remarks on notation and terminology are appropriate before we go further.
First, in elementary linear algebra, special notation is often used for vectors, especially
vectors in Euclidean space: a vector might, for example, be signalled by the use of bold
face, as in a, or by the use of a special symbol above or below the main symbol, as in

→
a

or a∼. This notational complication, however, is logically unnecessary, and is normally
avoided in more advanced work.

Second, you may be used to the terminology dot product and the corresponding
notation a · b, but we will always use the phrase inner product and the ‘angle-bracket’
notation 〈a, b〉. Similarly, ‖a‖ is sometimes referred to as the length or magnitude of a,
but we will always refer to it as the norm.

The inner product can be used to define the component and the projection of

one vector on another. Geometrically, the component of a on b is formed by

projecting a perpendicularly onto b and measuring the length of the projection;

informally, the component measures how far a ‘sticks out’ in the direction of b,

or ‘how long a looks’ from the perspective of b. Since this quantity should

depend only on the direction of b and not on its length, it is convenient to

define it first when b is normalised, or a unit vector, that is, satisfies ‖b‖ = 1.

In this case, the component of a on b is defined simply to be

〈a, b〉.

If b is not normalised, then the component of a on b is obtained by applying

the definition to its normalisation
(

1/‖b‖
)

b, which is a unit vector, giving the

expression
〈

a,
1

‖b‖
b

〉

=

1

‖b‖
〈a, b〉

for the component (note that we must assume that b is not the zero vector here,

to ensure that ‖b‖ � 0).

Since the component is defined as an inner product, its value can be any real

number – positive, negative or zero. This implies that our initial description

of the component above was not quite accurate: the component represents not

just the length of the first vector from the perspective of the second, but also,

according to its sign, how the first vector is oriented with respect to the second.

(For the special case when the component is 0, see below.)
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1.1 Orthonormality in Rn 3

It is now simple to define the projection of a on b; this is the vector whose

direction is given by b and whose length and orientation are given by the

component of a on b. Thus if ‖b‖ = 1, then the projection of a on b is given by

〈a, b〉 b,

and for general non-zero b by

〈

a,
1

‖b‖
b

〉

1

‖b‖
b =

1

‖b‖2
〈a, b〉 b.

Vectors a and b are said to be orthogonal if 〈a, b〉 = 0, and a collection

of vectors is orthonormal if each vector in the set has norm 1 and every two

distinct elements from the set are orthogonal. If a set of vectors is indexed

by the values of a subscript, as in v1, v2, . . . , say, then the orthonormality of

the set can be expressed conveniently using the Kronecker delta: the set is

orthonormal if and only if

〈vi, v j〉 = δi, j for all i, j,

where the Kronecker delta δi, j is defined to be 1 when i = j and 0 otherwise

(over whatever is the relevant range of i and j).

All the above definitions are purely algebraic: they use nothing more than

the algebraic operations permitted in a vector space and in the field of scalarsR.

However, the definitions also have clear geometric interpretations, at least in

R
2 and R3, where we can visualise the geometry (see Exercise 1.2); indeed,

we used this fact explicitly at a number of points in the discussion (speaking

of ‘how long’ one vector looks from another’s perspective and of the ‘length’

and ‘orientation’ of a vector, for example). We can attempt a somewhat more

comprehensive list of such geometric interpretations as follows.

• A vector a =

⎛
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is just a point in Rn (whose coordinates are of course

the numbers a1, a2, . . . , an).

• The norm ‖a‖ is the Euclidean distance of the point a from the origin, and

more generally ‖a−b‖ is the distance of the point a from the point b. (Given

the formula defining the norm, this is effectively just a reformulation of

Pythagoras’ theorem; see Exercise 1.2.)

• For a unit vector b, the inner product 〈a, b〉 gives the magnitude and

orientation of a when seen from b.
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4 1 An Overview

• The inner product and norm are related by the formula

cos θ =
〈a, b〉
‖a‖ ‖b‖

,

where θ is the angle between the (non-zero) vectors a and b.

• Non-zero vectors a and b are orthogonal precisely when they are perpendic-

ular, corresponding to the case cos θ = 0 above.

• A collection of vectors is orthonormal if its members have length 1 and are

mutually perpendicular.

➤ It is reasonable to ask what we can make of these geometric interpretations in Rn

when n > 3 and we can no longer visualise the situation. Can we sensibly talk about
vectors being ‘perpendicular’, or about the ‘lengths’ of vectors, in spaces that we cannot
visualise? The algebra works similarly in all dimensions, but does the geometry?

This question is perhaps as much philosophical as mathematical, but the experience
and consensus of mathematicians is that the geometric terminology and intuition which
are so central to our understanding in low dimensions are simply too valuable to discard
in higher dimensions, and it is therefore used uniformly, whatever the dimension of
the space. One of the remarkable and beautiful aspects of linear algebra is that the
geometric ideas which are so obviously meaningful and useful in R2 and R3 play just
as significant a role in higher-dimensional Euclidean spaces.

Further, as hinted earlier, an underlying theme of this book is to study how the same
circle of ideas – of inner products, norms, orthogonality and orthonormality, and so on –
plays a vital role in the study of certain spaces of infinite dimension, and in particular
in the theory of wavelets.

Let us now look at two examples in R3.

The first, though extremely simple, is nevertheless fundamental. Consider

the vectors

e1 =
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and e3 =
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in R3. These vectors form what is usually called the standard basis for R3;

they form a basis, by the definition of that term, because they are linearly

independent and every vector in R3 can be expressed uniquely as a linear

combination of them. But what is especially of interest here, though it

is mathematically trivial to check, is that e1, e2, e3 form an orthonormal

basis:
〈

ei, e j

〉

= δi, j for i, j= 1, 2, 3. It follows from the orthonormality that

in the expression for a given vector as a linear combination of e1, e2, e3, the

coefficients in the combination are the respective components of the vector on

e1, e2, e3. Specifically, if

a =
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1.1 Orthonormality in Rn 5

then the component of a on ei is 〈a, ei〉 = ai for i = 1, 2, 3, and we have

a = a1e1 + a2e2 + a3e3 =

3
∑

i=1

〈a, ei〉 ei.

For our second example, consider the three vectors
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It is simple to verify that these vectors are orthonormal. From orthonormality,

it follows that the three vectors are linearly independent, and then, since R3

has dimension 3, that they form a basis for R3 (see Exercise 1.3). However,

our main point here is to observe that we can express an arbitrary vector c as a

linear combination of b1, b2 and b3 nearly as easily as in the first example, by

computing components.

For example, take

c =
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Projecting c onto each of b1, b2 and b3, we obtain the components

〈c, b1〉 = −
1

2
− 3
√

2
, 〈c, b2〉 =

3
√

2
and 〈c, b3〉 = −

1

2
+

3
√

2
,

respectively, and these quantities are the coefficients required to express c as a

linear combination of b1, b2 and b3. That is,

c = 〈c, b1〉 b1 + 〈c, b2〉 b2 + 〈c, b3〉 b3 =

3
∑

i=1
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or, numerically,
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and of course we can check this easily by direct expansion.

➤ Although the algorithmic aspects of these ideas are not of primary interest here, it
is worth making one observation about them in passing. If a basis is orthonormal, then
the coefficient of a vector with respect to any given basis vector depends only on that
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6 1 An Overview

basis vector. This is in marked contrast to the case when the basis is not orthonormal;
the value of the coefficient then potentially involves all of the basis vectors, and finding
the value may involve much more computation.

Thus orthonormality makes the algebra in the second example almost as

simple as in the first example. Furthermore, the geometry is almost identical

to that of the first example too, even though it is somewhat harder to visualise.

The three vectors b1, b2 and b3 are orthonormal, and hence define a system of

mutually perpendicular axes in R3, just like the standard basis vectors e1, e2

and e3, and the coefficients that we found for c by computing components are

nothing other than the coordinates of the point c on these axes.

➤ The axes defined by b1, b2 and b3, or any orthonormal basis in R3, can be obtained
by rotation of the usual axes through some angle around some axis through the origin.
However, while the usual coordinate system is a right-handed system, the coordinate
system defined by an arbitrarily chosen orthogonal basis may be right- or left-handed.
A linear algebra course typically explains how to compute the axis and the angle of
rotation, as well as to determine the handedness of a system.

1.2 Some Infinite-Dimensional Spaces

1.2.1 Spaces of Sequences

A natural way of trying to translate our ideas so far into an infinite-dimensional

space is to consider a vector space of ‘infinity-tuples’, instead of n-tuples for

some n ∈ N. Our vectors are thus infinitely long columns of the form

a =

⎛
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⎟
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⎟
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,

and we will denote the resulting vector space by R∞.

We make two simple points to begin with. First, column notation for vectors

becomes increasingly inconvenient as the columns become longer, so we will

switch henceforth to row notation instead. Second, we already have a standard

name for infinitely long row vectors

a = (a1, a2, a3, . . . ) ∈ R∞ :

they are simply sequences. Thus, R∞ is the vector space of all sequences of

real numbers.

There is no difficulty in checking that R∞ satisfies all the required conditions

to be a vector space. We will not do this here, but we will glance briefly at a

couple of illustrative cases and refer to Chapter 2 for details.
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1.2 Some Infinite-Dimensional Spaces 7

The axiom of closure under vector addition requires that when we add two

vectors in the space, the result is again a vector in the space. This is clear

for R∞, provided that we define the sum of two vectors in the obvious way,

following the definition in Rn. Thus if

a = (a1, a2, a3, . . . ) and b = (b1, b2, b3, . . . )

are in R∞, then we define

a + b = (a1 + b1, a2 + b2, a3 + b3, . . . ) ;

that is, addition of vectors in R∞ is defined entry by entry or entry-wise.

Closure is now obvious: each entry an + bn is a real number, by the axiom

of closure for addition in R, so a + b is again an element of R∞. For the axiom

of commutativity of vector addition, which requires that a+b = b+a, we have

a + b = (a1, a2, a3, . . . ) + (b1, b2, b3, . . . )

= (a1 + b1, a2 + b2, a3 + b3, . . . )

= (b1 + a1, b2 + a2, b3 + a3, . . . )

= (b1, b2, b3, . . . ) + (a1, a2, a3, . . . )

= b + a.

Notice that the central step in this argument is an application of the law of

commutativity of addition in R, paralleling the way in which the argument for

the closure axiom worked.

Now let us investigate how we might define an inner product and a norm

in R∞. Given vectors (that is, sequences) a and b as above, we would

presumably wish, following our procedure in Rn, to define their inner

product by

〈a, b〉 = a1b1 + a2b2 + a3b3 + · · · =
∞
∑

n=1

anbn,

and then to go on to say that a and b are orthogonal if 〈a, b〉 = 0. But there

is a problem: the infinite series
∑∞

n=1 anbn does not converge for all pairs of

sequences a and b, so the proposed inner product is not defined for all pairs of

vectors.

It is reasonable to try to solve this problem pragmatically by simply

removing all the troublesome vectors from the space, that is, by working in the

largest subspace of R∞ in which all of the required sums
∑∞

n=1 anbn converge.

Now this description does not quite constitute a definition of the desired

subspace, since it involves a condition on pairs of vectors and does not directly
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8 1 An Overview

give us a criterion for the membership of any single vector. However, there

is in fact such a criterion: the space can be defined directly as the set of all

sequences a = (a1, a2, a3, . . . ) for which the sum

∞
∑

n=1

a2
n

converges. This new space is denoted by ℓ2, so we have

ℓ2 =

{

(a1, a2, a3, . . . ) ∈ R∞ :

∞
∑

n=1

a2
n converges

}

.

➤ The name of the space is usually read as ‘little-ℓ-2’, the word ‘little’ being needed
because as we will see soon there are also ‘capital-ℓ-2’ or ‘big-ℓ-2’ spaces, which use
an ‘L’ rather than an ‘ℓ’. (Note that in some sources the ‘2’ is written as a subscript
rather than a superscript.)

It requires proof that this membership criterion for ℓ2 solves our original

problem – that ℓ2 is a vector space and that all the desired inner products now

lead to convergent sums – but this is left for Chapter 2. Notice, at least, that the

norm can certainly now be defined unproblematically by the formula

‖a‖ =
√

a2
1
+ a2

2
+ · · · =

( ∞
∑

n=1

a2
n

)
1
2

= 〈a, a〉
1
2 .

Thus we have found what, after checking, turn out to be satisfactory

definitions of an inner product and a norm in ℓ2, and therefore also of the

notions of orthogonality and orthonormality. What can we do with all this?

Let a = (a1, a2, a3, . . . , an) be in Rn for any fixed n (for notational

convenience we now adopt row notation for vectors in Rn). Then a can be

expressed as a linear combination of the n standard orthonormal basis vectors

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

e3 = (0, 0, 1, . . . , 0),
...

en = (0, 0, 0, . . . , 1),

in the form

a = a1e1 + a2e2 + a3e3 + · · · + anen =

n
∑

i=1

aiei,

as we noted in detail in the case of R3, in the first example of the previous

section.
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1.2 Some Infinite-Dimensional Spaces 9

It seems natural to try to do the same thing in ℓ2, since one of our aims was

to try to extend finite-dimensional ideas to the infinite-dimensional case. Thus

we would hope to say that any a = (a1, a2, a3, . . . ) ∈ ℓ2 can be written as a

linear combination of the infinite orthonormal sequence of vectors

e1 = (1, 0, 0, 0, . . . ), e2 = (0, 1, 0, 0, . . . ), e3 = (0, 0, 1, 0, . . . ), . . .

in the form

a = a1e1 + a2e2 + a3e3 + · · · =
∞
∑

n=1

anen,

where the coefficient of en is the component

an = 〈a, en〉

of a on en, as in the finite-dimensional case.

But another problem arises: the axioms of a vector space only allow a

finite number of vectors to added together, and hence only allow finite linear

combinations of vectors to be formed. Therefore, if we want to justify the

above very natural expression for a, we will have to find a way of giving

meaning (at least in some circumstances) to ‘infinite linear combinations’ of

vectors. This will be an important topic for detailed discussion in Chapter 4.

➤ The specific difficulty here is almost exactly the same as in the case of infinite
series of real numbers. The ordinary laws of arithmetic only allow us to add together
finitely many real numbers, and when we wish to add infinitely many, as in an infinite
series, we have to develop appropriate definitions and results to justify the process.
Specifically, we define partial sums and then take limits, and this will be exactly the
route we follow in the present case as well when we return to the issue in detail in
Chapter 4.

A related issue is raised by the phrase ‘orthonormal basis’, which we

have used a number of times. For an integer n, it is correct to say (as we

have) that the collection e1, e2, . . . , en is an orthonormal basis for Rn, simply

because the collection is both orthonormal and a basis. However, the collection

e1, e2, e3, . . . is not a basis for ℓ2, and we consequently cannot correctly

refer to this collection as an orthonormal basis for ℓ2. (See Exercise 1.6

and Subsection 2.3.2 for the claim that e1, e2, e3, . . . do not form a basis for ℓ2.)

This is the case, at any rate, as long as we continue to use the term

‘basis’ in the ordinary sense of linear algebra, which only allows finite linear

combinations. Once we have found a satisfactory definition of an infinite linear

combination, however, we will be able to expand the scope of application of

the term ‘basis’ in a way that will make it correct after all to call the collection

e1, e2, e3, . . . an orthonormal basis for ℓ2.
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10 1 An Overview

Although the use of the phrase ‘orthonormal basis’ in this extended sense

will not be formally justified until Chapter 4, we will nevertheless make

informal use of it a few times in the remainder of this chapter.

1.2.2 Spaces of Functions

We now take a further step away from the familiar Euclidean spaces Rn and

consider vector spaces of functions defined on an interval I of the real line. For

most of the discussion, the interval I will either be [−π, π] or the whole real

line R, but there is no need initially to restrict our choice. Our first attempt

to specify a useful space of functions on I might be to consider F(I), the

collection of all functions f : I → R. This is indeed a vector space, if we

define operations pointwise. Thus for f , g ∈ F(I), we define f + g by setting

( f + g)(x) = f (x) + g(x) for all x ∈ I, and it is clear that f+ g is again a function

from I to R, giving closure of F(I) under addition. Scalar multiplication is

handled similarly.

Further, we can easily write down what might appear to be a reasonable

definition of an inner product on F(I) by working in analogy to the inner

product definitions that we introduced earlier in Rn and ℓ2. In Rn, for example,

the definition

〈a, b〉 =
n
∑

i=1

aibi

multiplies corresponding entries of the n-tuples a and b and sums the resulting

terms and so, given two functions f and g in F(I), we might define

〈 f , g〉 =
∫

I

f g,

since this definition multiplies corresponding values of the functions f and g

and ‘sums’ the resulting terms, provided that we are prepared to think of

integration as generalised summation.

➤ Note the two notational simplifications we have used here for integration. First, we
can if we wish represent the region of integration in a definite integral as a subscript to
the integral sign; thus

∫

[−π,π]
. . . and

∫ π

−π
. . .

mean the same thing, as do

∫

R

. . . and

∫ ∞

−∞
. . . .
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