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Brownian Motion

In this chapter we introduce Brownian motion and study several aspects of

this stochastic process, including the regularity of sample paths, quadratic

variation, Wiener stochastic integrals, martingales, Markov properties, hit-

ting times, and the reflection principle.

1.1 Preliminaries and Notation

Throughout this book we will denote by (Ω,F ,P) a probability space,

where Ω is a sample space, F is a Ã-algebra of subsets of Ω, and P is a

Ã-additive probability measure on (Ω,F ). If X is an integrable or nonneg-

ative random variable on (Ω,F ,P), we denote by E(X) its expectation. For

any p g 1, we denote by Lp(Ω) the space of random variables on (Ω,F ,P)

such that the norm

�X�p := (E(|X|p))1/p

is finite.

For any integers k, n g 1 we denote by Ck
b
(Rn) the space of k-times

continuously differentiable functions f : Rn ³ R, such that f and all its

partial derivatives of order up to k are bounded. We also denote by Ck
0
(Rn)

the subspace of functions in Ck
b
(Rn) that have compact support. Moreover,

C>p (Rn) is the space of infinitely differentiable functions on Rn that have at

most polynomial growth together with their partial derivatives, C>
b

(Rn) is

the subspace of functions in C>p (Rn) that are bounded together with their

partial derivatives, and C>
0

(Rn) is the space of infinitely differentiable func-

tions with compact support.

1.2 Definition and Basic Properties

Brownian motion was named by Einstein (1905) after the botanist Robert

Brown (1828), who observed in a microscope the complex and erratic mo-
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2 Brownian Motion

tion of grains of pollen suspended in water. Brownian motion was then rig-

orously defined and studied by Wiener (1923); this is why it is also called

the Wiener process. For extended expositions about Brownian motion see

Revuz and Yor (1999), Mörters and Peres (2010), Durrett (2010), Bass

(2011), and Baudoin (2014).

The mathematical definition of Brownian motion is the following.

Definition 1.2.1 A real-valued stochastic process B = (Bt)tg0 defined on

a probability space (Ω,F ,P) is called a Brownian motion if it satisfies the

following conditions:

(i) Almost surely B0 = 0.

(ii) For all 0 f t1 < · · · < tn the increments Btn 2 Btn21
, . . . , Bt2 2 Bt1 are

independent random variables.

(iii) If 0 f s < t, the increment Bt2Bs is a Gaussian random variable with

mean zero and variance t 2 s.

(iv) With probability one, the map t ³ Bt is continuous.

More generally, a d-dimensional Brownian motion is defined as an Rd-

valued stochastic process B = (Bt)tg0, Bt = (B1
t , . . . , B

d
t ), where B1, . . . , Bd

are d independent Brownian motions.

We will sometimes consider a Brownian motion on a finite time interval

[0,T ], which is defined in the same way.

Proposition 1.2.2 Properties (i), (ii), and (iii) are equivalent to saying

that B is a Gaussian process with mean zero and covariance function

Γ(s, t) = min(s, t). (1.1)

Proof Suppose that (i), (ii), and (iii) hold. The probability distribution of

the random vector (Bt1 , . . . , Btn ), for 0 < t1 < · · · < tn, is normal because

this vector is a linear transformation of the vector

�

Bt1 , Bt2 2 Bt1 , . . . , Btn 2 Btn21

�

,

which has a normal distribution because its components are independent

and normal. The mean m(t) and the covariance function Γ(s, t) are given by

m(t) = E(Bt) = 0,

Γ(s, t) = E(BsBt) = E(Bs(Bt 2 Bs + Bs))

= E(Bs(Bt 2 Bs)) + E(B2
s) = s = min(s, t),

if s f t. The converse is also easy to show. �
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1.2 Definition and Basic Properties 3

The existence of Brownian motion can be proved in different ways.

(1) The function Γ(s, t) = min(s, t) is symmetric and nonnegative defi-

nite because it can be written as

min(s, t) =

� >

0

1[0,s](r)1[0,t](r)dr.

Then, for any integer n g 1 and real numbers a1, . . . , an,

n
�

i, j=1

aia j min(ti, t j) =

n
�

i, j=1

aia j

� >

0

1[0,ti](r)1[0,t j](r)dr

=

� >

0

� n
�

i=1

ai1[0,ti](r)

�2

dr g 0.

Therefore, by Kolmogorov’s extension theorem (Theorem A.1.1), there ex-

ists a Gaussian process with mean zero and covariance function min(s, t).

Moreover, for any s f t, the increment Bt2Bs has the normal distribution

N(0, t 2 s). This implies that for any natural number k we have

E
�

(Bt 2 Bs)
2k
�

=
(2k)!

2kk!
(t 2 s)k.

Therefore, by Kolmogorov’s continuity theorem (Theorem A.4.1), there

exists a version of B with Hölder-continuous trajectories of order ³ for any

³ < (k 2 1)/(2k) on any interval [0,T ]. This implies that the paths of this

version of the process B are ³-Hölder continuous on [0,T ] for any ³ < 1/2

and T > 0.

(2) Brownian motion can also be constructed as a Fourier series with

random coefficients. Fix T > 0 and suppose that (en)ng0 is an orthonormal

basis of the Hilbert space L2([0,T ]). Suppose that (Zn)ng0 are independent

random variables with law N(0, 1). Then, the random series

>
�

n=0

Zn

� t

0

en(r)dr (1.2)

converges in L2(Ω) to a mean-zero Gaussian process B = (Bt)t*[0,T ] with
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4 Brownian Motion

covariance function (1.1). In fact, for any s, t * [0,T ],

E

�� N
�

n=0

Zn

� t

0

en(r)dr

�� N
�

n=0

Zn

� s

0

en(r)dr

��

=

N
�

n=0

�

� t

0

en(r)dr

��

� s

0

en(r)dr

�

=

N
�

n=0

�

1[0,t], en

�

L2([0,T ])

�

1[0,s], en

�

L2([0,T ]) ,

which converges as N ³ > to

�

1[0,t], 1[0,s]

�

L2([0,T ]) = min(s, t).

The convergence of the series (1.2) is uniform in [0,T ] almost surely; that

is, as N tends to infinity,

sup
0ftfT

�

�

�

�

�

N
�

n=0

Zn

� t

0

en(r)dr 2 Bt

�

�

�

�

�

a.s.2³ 0. (1.3)

The fact that the process B has continuous trajectories almost surely is a

consequence of (1.3). We refer to Itô and Nisio (1968) for a proof of (1.3).

Once we have constructed the Brownian motion on an interval [0,T ],

we can build a Brownian motion on R+ by considering a sequence of inde-

pendent Brownian motions B(n) on [0,T ], n g 1, and setting

Bt = B
(n21)

T
+ B

(n)

t2(n21)T
, (n 2 1)T f t f nT,

with the convention B
(0)

T
= 0.

In particular, if we take a basis formed by the trigonometric functions,

en(t) = (1/
:
Ã) cos(nt/2) for n g 1 and e0(t) = 1/

:
2Ã, on the interval

[0, 2Ã], we obtain the Paley–Wiener representation of Brownian motion:

Bt = Z0

t
:

2Ã
+

2
:
Ã

>
�

n=1

Zn

sin(nt/2)

n
, t * [0, 2Ã]. (1.4)

The proof of the construction of Brownian motion in this particular case

can be found in Bass (2011, Theorem 6.1).

(3) Brownian motion can also be regarded as the limit in distribution

of a symmetric random walk. Indeed, fix a time interval [0,T ]. Consider

n independent and identically distributed random variables ¿1, . . . , ¿n with

mean zero and variance T/n. Define the partial sums

Rk = ¿1 + · · · + ¿k, k = 1, . . . , n.
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1.2 Definition and Basic Properties 5

By the central limit theorem the sequence Rn converges in distribution, as

n tends to infinity, to the normal distribution N(0,T ).

Consider the continuous stochastic process S n(t) defined by linear inter-

polation from the values

S n

�

kT

n

�

= Rk, k = 0, . . . , n.

Then, a functional version of the central limit theorem, known as the

Donsker invariance principle, says that the sequence of stochastic processes

S n(t) converges in law to Brownian motion on [0,T ]. This means that, for

any continuous and bounded function × : C([0,T ])³ R, we have

E(×(S n))³ E(×(B)),

as n tends to infinity.

Basic properties of Brownian motion are (see Exercises 1.5–1.8):

1. Self-similarity For any a > 0, the process (a21/2Bat)tg0 is a Brownian

motion.

2. For any h > 0, the process (Bt+h 2 Bh)tg0 is a Brownian motion.

3. The process (2Bt)tg0 is a Brownian motion.

4. Almost surely limt³> Bt/t = 0, and the process

Xt =

§

«

«

«

«

«

¬

tB1/t if t > 0,

0 if t = 0,

is a Brownian motion.

Remark 1.2.3 As we have seen, the trajectories of Brownian motion on

an interval [0,T ] are Hölder continuous of order ³ for any ³ < 1
2
. However,

the trajectories are not Hölder continuous of order 1
2
. More precisely, the

following property holds (see Exercise 1.9):

P

�

sup
s,t*[0,1]

|Bt 2 Bs|:
|t 2 s|

= +>
�

= 1.

The exact modulus of continuity of Brownian motion was obtained by

Lévy (1937):

lim sup
·³0

sup
s,t*[0,1],|t2s|<·

|Bt 2 Bs|
!

2|t 2 s| log |t 2 s|
= 1, a.s.

Lévy’s proof can be found in Mörters and Peres (2010, Theorem 1.14). In
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6 Brownian Motion

contrast, the behavior at a single point is given by the law of the iterated

logarithm, due to Khinchin (1933):

lim sup
t³s

|Bt 2 Bs|
!

2|t 2 s| log log |t 2 s|
= 1, a.s.

for any s g 0. See also Mörters and Peres (2010, Corollary 5.3) and Bass

(2011, Theorem 7.2).

Brownian motion satisfies E(|Bt 2 Bs|2) = t 2 s for all s f t. This means

that when t 2 s is small, Bt 2 Bs is of order
:

t 2 s and (Bt 2 Bs)
2 is of

order t 2 s. Moreover, the quadratic variation of a Brownian motion on

[0, t] equals t in L2(Ω), as is proved in the following proposition.

Proposition 1.2.4 Fix a time interval [0, t] and consider the following

subdivision Ã of this interval:

0 = t0 < t1 < · · · < tn = t.

The norm of the subdivision Ã is defined as |Ã| = max0f jfn21(t j+1 2 t j). The

following convergence holds in L2(Ω):

lim
|Ã|³0

n21
�

j=0

(Bt j+1
2 Bt j

)2
= t. (1.5)

Proof Set ¿ j = (Bt j+1
2 Bt j

)2 2 (t j+1 2 t j). The random variables ¿ j are

independent and centered. Thus,

E

�� n21
�

j=0

(Bt j+1
2 Bt j

)2 2 t

�2�

= E

�� n21
�

j=0

¿ j

�2�

=

n21
�

j=0

E
�

¿2
j

�

=

n21
�

j=0

�

3(t j+1 2 t j)
2 2 2(t j+1 2 t j)

2
+ (t j+1 2 t j)

2

�

= 2

n21
�

j=0

(t j+1 2 t j)
2 f 2t|Ã| |Ã|³02³ 0,

which proves the result. �

As a consequence, we have the following result.

Proposition 1.2.5 The total variation of Brownian motion on an interval

[0, t], defined by

V = sup
Ã

n21
�

j=0

|Bt j+1
2 Bt j
|,
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1.3 Wiener Integral 7

where Ã = {0 = t0 < t1 < · · · < tn}, is infinite with probability one.

Proof Using the continuity of the trajectories of Brownian motion, we

have

n21
�

j=1

(Bt j+1
2 Bt j

)2 f sup
j

|Bt j+1
2 Bt j
|
� n21
�

j=0

|Bt j+1
2 Bt j
|
�

f V sup
j

|Bt j+1
2 Bt j
| |Ã|³02³ 0

if V < >, which contradicts the fact that
�n21

j=0(Bt j+1
2 Bt j

)2 converges in

mean square to t as |Ã| ³ 0. Therefore, P(V < >) = 0. �

Finally, the trajectories of B are almost surely nowhere differentiable.

The first proof of this fact is due to Paley et al. (1933). Another proof,

by Dvoretzky et al. (1961), is given in Durrett (2010, Theorem 8.1.6) and

Mörters and Peres (2010, Theorem 1.27).

1.3 Wiener Integral

We next define the integral of square integrable functions with respect to

Brownian motion, known as the Wiener integral.

We consider the set E0 of step functions

×t =

n21
�

j=0

a j1(t j,t j+1](t), t g 0, (1.6)

where n g 1 is an integer, a0, . . . , an21 * R, and 0 = t0 < · · · < tn. The

Wiener integral of a step function × * E0 of the form (1.6) is defined by

� >

0

×tdBt =

n21
�

j=0

a j(Bt j+1
2 Bt j

).

The mapping × ³
� >

0
×tdBt from E0 ¢ L2(R+) to L2(Ω) is linear and

isometric:

E

��

� >

0

×tdBt

�2�

=

n21
�

j=0

a2
j(t j+1 2 t j) =

� >

0

×2
t dt = �×�2

L2(R+)
.

The space E0 is a dense subspace of L2(R+). Therefore, the mapping

×³
� >

0

×tdBt

www.cambridge.org/9781107611986
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-61198-6 — Introduction to Malliavin Calculus
David Nualart , Eulalia Nualart
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Brownian Motion

can be extended to a linear isometry between L2(R+) and the Gaussian

subspace of L2(Ω) spanned by the Brownian motion. The random variable
� >

0
×tdBt is called the Wiener integral of × * L2(R+) and is denoted by

B(×). Observe that it is a Gaussian random variable with mean zero and

variance �×�2
L2(R+)

.

The Wiener integral allows us to view Brownian motion as the cumula-

tive function of a white noise.

Definition 1.3.1 Let D be a Borel subset of Rm. A white noise on D is a

centered Gaussian family of random variables

{W(A), A * B(Rm), A ¢ D, �(A) < >},

where � denotes the Lebesgue measure, such that

E(W(A)W(B)) = �(A + B).

The mapping 1A ³ W(A) can be extended to a linear isometry from

L2(D) to the Gaussian space spanned by W, denoted by

×³
�

D

×(x)W(dx).

The Brownian motion B defines a white noise on R+ by setting

W(A) =

� >

0

1A(t)dBt, A * B(R+), �(A) < >.

Conversely, Brownian motion can be defined from white noise. In fact, if

W is a white noise on R+, the process

Wt = W([0, t]), t g 0,

is a Brownian motion.

The two-parameter extension of Brownian motion is the Brownian sheet,

which is defined as a real-valued two-parameter Gaussian process (Bt)t*R2
+

with mean zero and covariance function

Γ(s, t) = E(BsBt) = min(s1, t1) min(s2, t2), s, t * R2
+
.

As above, the Brownian sheet can be obtained from white noise. In fact, if

W is a white noise on R2
+
, the process

Wt = W([0, t1] × [0, t2]), t * R2
+
,

is a Brownian sheet.
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1.5 Brownian Filtration 9

1.4 Wiener Space

Brownian motion can be defined in the canonical probability space

(Ω,F ,P) known as the Wiener space. More precisely:

" Ω is the space of continuous functions Ë : R+ ³ R vanishing at the

origin.

" F is the Borel Ã-field B(Ω) for the topology corresponding to uniform

convergence on compact sets. One can easily show (see Exercise 1.11)

that F coincides with the Ã-field generated by the collection of cylinder

sets

C = {Ë * Ω : Ë(t1) * A1, . . . , Ë(tk) * Ak} , (1.7)

for any integer k g 1, Borel sets A1, . . . , Ak in R, and 0 f t1 < · · · < tk.

" P is the Wiener measure. That is, P is defined on a cylinder set of the

form (1.7) by

P(C) =

�

A1×···×Ak

pt1 (x1)pt22t1 (x2 2 x1) · · · ptk2tk21
(xk 2 xk21) dx1 · · · dxk,

(1.8)

where pt(x) denotes the Gaussian density

pt(x) = (2Ãt)21/2e2x2/(2t), x * R, t > 0.

The mapping P defined by (1.8) on cylinder sets can be uniquely ex-

tended to a probability measure on F . This fact can be proved as a conse-

quence of the existence of Brownian motion on R+. Finally, the canonical

stochastic process defined as Bt(Ë) = Ë(t), Ë * Ω, t g 0, is a Brownian

motion.

The canonical probability space (Ω,F ,P) of a d-dimensional Brownian

motion can be defined in a similar way.

Further into the text, (Ω,F ,P) will denote a general probability space,

and only in some special cases will we restrict our study to Wiener space.

1.5 Brownian Filtration

Consider a Brownian motion B = (Bt)tg0 defined on a probability space

(Ω,F ,P). For any time t g 0, we define the Ã-field Ft generated by the

random variables (Bs)0fsft and the events in F of probability zero. That is,

Ft is the smallest Ã-field that contains the sets of the form

{Bs * A} , N,
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10 Brownian Motion

where 0 f s f t, A is a Borel subset of R, and N * F is such that P(N) = 0.

Notice that Fs ¢ Ft if s f t; that is, (Ft)tg0 is a nondecreasing family of

Ã-fields. We say that (Ft)tg0 is the natural filtration of Brownian motion on

the probability space (Ω,F ,P).

Inclusion of the events of probability zero in each Ã-field Ft has the

following important consequences:

1. Any version of an adapted process is also adapted.

2. The family of Ã-fields is right-continuous; that is, for all t g 0, +s>tFs =

Ft.

Property 2 is a consequence of Blumenthal’s 0–1 law (see Durrett, 2010,

Theorem 8.2.3).

The natural filtration (Ft)tg0 of a d-dimensional Brownian motion can be

defined in a similar way.

1.6 Markov Property

Consider a Brownian motion B = (Bt)tg0. The next theorem shows that

Brownian motion is an Ft-Markov process with respect to its natural filtra-

tion (Ft)tg0 (see Definition A.5.1).

Theorem 1.6.1 For any measurable and bounded (or nonnegative) func-

tion f : R³ R, s g 0 and t > 0, we have

E( f (Bs+t)|Fs) = (Pt f )(Bs),

where

(Pt f )(x) =

�

R

f (y)pt(x 2 y)dy.

Proof We have

E( f (Bs+t)|Fs) = E( f (Bs+t 2 Bs + Bs)|Fs).

Since Bs+t 2 Bs is independent of Fs, we obtain

E( f (Bs+t)|Fs) = E( f (Bs+t 2 Bs + x))|x=Bs

=

�

R

f (y + Bs)
1
:

2Ãt
e2|y|

2/(2t)dy

=

�

R

f (y)
1
:

2Ãt
e2|Bs2y|2/(2t)dy = (Pt f )(Bs),

which concludes the proof. �
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