Index

abiotic factors, 166
accountability, assessment for, 129
agency, 61
agents of change, 56, 67, 68
Aikenhead, G. S., 7
Ainley, J., 20
Alexander, R., 121
alternative conceptions, 35, 57, 100, 137, 142, 204, 205, 229
analogical instruction strategy, 118
analogical reasoning, 119
Anderson, D., 186
Andrews, R.L., 159
Angus, M., 20
Appleton, K., 4, 26
assessment, 128
for accountability, 128, 129
within science inquiry, 130–2
teachers’ role in, 140–2
See also assessment for accountability, diagnostic assessment, formative assessment, summative assessment
astronomy, 82–4
NASA, 96
See also earth and space science teaching and learning
atmosphere, 218
Australian Curriculum, 5, 92
Biological Sciences, 69, 147, 149–50, 166, 167, 168
Chemical Sciences, 70, 147, 150–1, 186, 187
Earth and Space Science, 69, 147, 151, 209
Nature and Development of Science, 103
Physical Sciences, 70, 147, 150–1, 187, 227
Science as a Human Endeavour, 69, 95, 103
Science Inquiry Skills, 70, 95, 101
Science Understanding, 95, 187, 227
Use and Influence of Science, 103
See also Victorian Essential Learning Standards
Ausubel, D., 251
authentic learning, 13–14, 15, 176, 177
Baacke, D., 55
Barnes, D., 121
barriers to science teaching, 21–2
extrinsic, 27–32
intrinsic, 22–7
barriers to student learning, 32–5
Berry, A., 4
Berryman, M., 46
big ideas, 132, 186
biology
animal functions, 169
classification, 168
environment, 168, 169
life cycle, 169
living things, 168
non-living things, 168
plant functions, 169
biology learning and teaching, 166–7
5E model, 169–71
curriculum requirements, 167–9
biodeterioration, 218
biotic factors, 166
Bishop, R., 46
Blair, 68
Bloom’s taxonomy, 123
boiling point, 192
Brigham, P., 102
Bronfenbrenner, U., 55
See also ecological model of child development
Campbell, C., 11, 67
Carey, S., 175
Carr, D.L., 159
Carter, C.C., 159
Cashman, T., 76
Chambers, D.W., 92
chemical elements, 194
chemistry, 186
guided inquiry teaching approach, 186
objects, 190
properties, 190
See also matter
citizen scientists, 14–15
classroom assessment, 132–9
purpose for, 128–30
support for, 142
classrooms
and community, 47, 67
organisation of, 48
Claxton, G., 92
closed questions, 123
Clough, M. P., 105
co-construction, 31, 122
Index

Colvill, M., 11
communication
modes, 227
patterns, 48
skills, 12–13
compass points. See geolocation
concepts
canonical forms, 206
condensation, 58, 217
constructivist approach to learning and
teaching, 169, 229, 251
Cowie, B., 133
creativity, nurturing, 10–11
critical thinking, 12–13
crowded curriculum, 28–9
cultural capital, 40
culturally responsive pedagogical
practices, 40
examples, 48–51
framework for, 45–51
teachers’ attributes, 47
culture-based education, 43–5
curiosity, nurturing, 10–11
curricula, 96–8
and diverse learners, 40–2
See also Australian Curriculum;
New Zealand Curriculum
curricula integration, 146–7
benefits, 158–9
definition, 146–7
issues with, 159–60
Danforth, P.E., 159
data collection and analysis
first hand data, 67
day and night cycle, explanation for, 117–19
deep knowledge, 160
deficit thinking/theorising, 46
Dewey, J., 43
diagnostic assessment, 129–30
dialogic classroom culture, 122
diffusion, 195
digital literacy, 155
digital natives, 74
digital stories, 154
digital technology, 31
Dimitrakopoulos, C., 4
diverse learners, 51
science curriculum and, 40–2
doing science, 101
versus writing, 34
See also science as process
drawing
understanding forces through, 231
dynamic body of knowledge, 94
earth and space science teaching and
learning
early primary years, 214–18
foundation years, 212–14
middle primary years, 218–21
senior primary years, 221–3
socially relevant contexts, 210–11
teachers’ and students’ involvement in,
209–10
Earth System science model, 218–21
earthquakes, 222–3
teaching resources
Primary Connections Earthquake
Explorers, 222
ecological model of child development, 55
ecological techno-subsystem, 55
environmental systems, 55
ecological sustainability, 59
Education Review Office (NZ), 20
elaborate phase, in 5E model, 178–80
electrical currents, 84–5
Ellis, A., 146
empowerment, 61
energy, 227
generate phase, in 5E model, 171–5
evaluate phase, in 5E model, 180
evaporation, 58, 217
everyday concept formation, 57
everyday concepts
and scientific concepts, 57–8
everyday science, 56–7
experiments, 99, 102
explain phase, in 5E model, 171–5
exploratory writing strategies, 124
Sesseltanz (Germany), 124
explore phase, in 5E model, 175–8
feedback, effective, 137–8
Fensham, P.J., 73
fieldtrips, 36–7
First Nation peoples, 41
Fitzgerald, A., 10, 11
5E model, 169–71
components, 170–1
elaborate phase, 178–80
generate phase, 171–5
evaluate phase, 180
examples, 180–2
explain phase, 178
explore phase, 175–8
Fleer, M., 57
force pairs, 240–3
forces, 227, 234–5
balanced forces and stationary objects, 235–8
in everyday life, 230–1
in flight, 114–16
floating objects, 238–40
force pairs, 240–3
friction, 243, 244–6
gravity, 235
and motion, 243–6
teacher’s prior knowledge of, 228–30
understanding, 231–4
understanding through drawing, 231
formative assessment, 128, 129, 132, 137, 138, 141
interactive, 134
planned, 133–4
Forret, M., 73
Fotiades, F., 197
friction, 243, 244–6
funds of knowledge, 135
gardening activities, 68
gases, 198–9
generalist teachers, 2
Generation Y, 74
géolocalisation, 219
compass points, 219–20
George, P., 159, 160
géosphère, 218
Gilbert, J., 96
Grammaticopoulou, M., 198
graphs
bar graphs, 114
for representing information, 113–14
line graphs, 114
gravity, 235
guided inquiry teaching approach, 186
Gunel, M., 111
Gunter, G., 76
Gunter, R., 76
Hackling, M., 122
Hand, B., 111
Hart, R., 59
Ladder of Participation, 59
heterogeneous materials, 190
Higgs boson, 195
Hoban, G., 140
Hodder, D., 67, 98, 106
homogenous materials, 190
Howitt, C., 11
Hubber, P., 137, 201, 234, 241
human activity, and learning, 4
Humphreys, A., 146
Hurd, P.D., 96
hydrological/water cycle, 217–18
condensation, 217
evaporation, 58, 217
infiltration component, 217
precipitation, 217
hydrosphere, 218
i can animate, 120
iGeneration, 74
igneous rocks, 250
inclusive approaches to science education, 11
indigenous peoples, 40, 41, 48
a Māori parent’s thoughts, 42–5
Indigenous elder community member’s thoughts, 42
informal learning, of science, 36
information and communication technologies (ICTs), 73, 154
exploring, 74–6
ICT-enhanced learning in science, 76–86
position of, 73–4
social software, 77
inorganic matter, 190
inquiry-based approach, 123
Corn and Popping Corn, 155–8
to integrating learning across the curriculum, 155–8
inquiry-based learning, 76
assessment in, 130–2
inquiry units, 13
integrated curriculum, 146
integration literacy, 76
interactive formative assessment, 134
interdisciplinary curriculum, 146, 151–5
International Seismometer Array (ISA), 223
internet, 74
interdisciplinary science curriculum, 147–51
investigation types, 177
design, 177
fair testing, 177
secondary data, 177
survey, 177
IRE (initiate-response-evaluate), 122
Index

Jacobs, H.H., 146
Jenkins, 61
Jewitt, C., 116
Johnson, P., 55, 193, 197, 198
journaling in science, 124–5
Kim, M.M., 159
Klemmer, 68
knowledge
definition of, 96
for science teaching, 25–7
social construction of, 8–10
Koehler, M., 75
Krajcik, J., 186
Ladder of Participation, 59
Lake, K., 146
learning, constructivist view of, 100
learning behaviours, 11
learning content, 47
learning management systems (LMS), internet-based, 77
Moodle, 77
learning priorities, 48
learning styles, 227
Lederman, N., 104
Lemke, J., 41
life cycle, 169
light, 85–6
liquids, 198–9
local environment, use of, 78–80
Locke, J., 100
Loughran, J., 4
Lubben, 67
Macey, S.M., 159
Making Sense of Science series, 142
Mason, R.T., 159
materials, 190, 193
description of, 190–1
heterogenous, 190
homogenous, 190
Primary Connections Gripping Gloves (resource), 191
matter, 189
animations demonstrating, 198
classification, 199
ideas about, 188–90
inorganic, 190
issues in teaching, 204–6
organic, 190
particle model of, 189, 194–7
in primary curriculum, 187–8
states of, 198–9
teaching, 200–6
Matthews, M. R., 105
McComas, W. F., 93, 94, 104, 107
melting point, 192
mental models, 110
metamorphic rocks, 250
methodology, 31
Millennials, 74
Mishra, P., 75
mixtures, 190, 192, 193
Morris, M., 11
motion, forces and, 243–6
Moviemaker, 120
multi-literacies, 111
multimodal communication, and science, 110–12
Murray, 61
myths, about science, 93–4
nanoparticles, 189
National Assessment Program – Literacy and Numeracy (NAPLAN), 129
National Education Monitoring Project (NEMP), 32, 129
natural disasters, 221
earthquakes, 222–3
volcanoes, 222
nature of science, 103–6
as a human endeavour, 41
Neilson, W., 140
Net Generation, 74
New Zealand Curriculum, 5, 92
Living World, 69, 147, 149–50, 166, 167, 168
Material World, 70, 147, 150–1, 186, 187, 188
Nature of Science, 69, 70, 95, 101, 103
Communicating in Science, 95, 101
Investigating in Science, 95, 101
Participating and Contributing, 95, 103
Understanding about Science, 95, 103
Physical World, 70, 147, 150–1, 227
Planet Earth and Beyond, 69, 147, 151, 209
Night Diary, 213
Norris, S.P., 7
Olney, H., 20
Olson, J.K., 104
open-ended inquiry approach, 179, 201
open questions, 123
openness, in primary science classroom, 11–12
O’Reilly, T., 74
organic matter, 190
Palmer, D.C., 146
Papageorgiou, G., 197, 198
participatory case studies, examples, 61–7
particle model of matter, 186
pedagogical content knowledge (PCK), 26, 75, 255
pedagogy aims to assist student learning, 5
perceptions of science and scientists, 35
Periodic Table, 194
Phillips, L.M., 7
physical volcanology, 222
physics, 227
See also forces, matter, substances
place-based education, 43
planned formative assessment, 133–4
positive learning environments, 254
Post, T., 146
practical science, management of, 31–2
practical work. See science as process
practice, reflection on, 26
Prain, V., 137, 201
precipitation, 217
predict, explain, observe, and explain (PEOE), 34
predict, observe, explain (POE), 34, 134
Prensky, M., 75
Primary Connections, 133, 142, 252
primary science, purpose and content of, 5
primary science classrooms, 11–12
primary science education course, an example, 253–5
primary students, attitudes to science, 32, 33–4, 54
primary teachers, expertise, 7–15
Pring, R., 146
process of science, 92, 101
productive questioning, 122–4
Programme for International Student Assessment (PISA), 129
properties. See chemistry
pseudoscience, 35
pure substance, 194
quadrats, 216, 219
questioning, 232
See also inquiry-based approach
real world events and investigation, links between, 113
reduce, reuse and recycle initiatives, 62
Reiss, M., 61, 93
relationship patterns, 47
reliability of assessment, 142
representation
multiple multimodal forms of, 136–7
representation construction approach, 201–4
representations, 186, 201
respect, in primary science classroom, 11–12
revision of scientific knowledge, 98
Richardson, W., 46
Roberts, D.A., 6
rock cycle, 251
rocks
igneous, 250
metamorphic, 250
sedimentary, 250
role-play, 118, 200
scaffolding, 213
School Innovation in Science Project, 74
science
as content, 96
description of, 94–6
as human endeavour, 5–6, 92, 103–6
lack of relevance, 33–4, 54
myths about, 93
as process, 101–3
representations of, 3
stereotypes of scientists, 35, 93
as a way of thinking and acting, 4
science, representations of, 112–13
science assessments, monitoring quality in, 141
science content, 92
science discourse. See talking about science
science education
inclusive approaches to, 11
relevance and purpose of, 22–4
science education domains
doing science, 94
learning about science, 94
learning science, 94
science environment, 36
science inquiry skills, 102, 188
science leadership, lack of, 258
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Learning Hub (website), 102, 252</td>
</tr>
<tr>
<td>science representation</td>
</tr>
<tr>
<td>drawing, 116</td>
</tr>
<tr>
<td>modelling, 116</td>
</tr>
<tr>
<td>science teaching practice, 28, 37, 47</td>
</tr>
<tr>
<td>content-based approach, 25</td>
</tr>
<tr>
<td>effective science learning, 73–4, 111</td>
</tr>
<tr>
<td>effective science teaching, 111, 248–53</td>
</tr>
<tr>
<td>transmission-type approach, 25</td>
</tr>
<tr>
<td>science teaching resources</td>
</tr>
<tr>
<td>budgeting, 28</td>
</tr>
<tr>
<td>equipment, lack of, 29–31, 220</td>
</tr>
<tr>
<td>Science Understanding, 96</td>
</tr>
<tr>
<td>scientific concept formation, 57</td>
</tr>
<tr>
<td>scientific content knowledge, 3, 25, 26, 210</td>
</tr>
<tr>
<td>scientific inquiry, 29</td>
</tr>
<tr>
<td>See also inquiry-based approach</td>
</tr>
<tr>
<td>scientific knowledge, 24–5</td>
</tr>
<tr>
<td>features of, 98–100</td>
</tr>
<tr>
<td>teaching, 100–1</td>
</tr>
<tr>
<td>scientific literacy, 2, 7, 106</td>
</tr>
<tr>
<td>development of, 6–7</td>
</tr>
<tr>
<td>exploring the meaning, 8–10</td>
</tr>
<tr>
<td>scientific method, 101</td>
</tr>
<tr>
<td>scientists, children’s view of, 92</td>
</tr>
<tr>
<td>scientists, views of, 35, 92, 93</td>
</tr>
<tr>
<td>Scott, D., 36</td>
</tr>
<tr>
<td>sedimentary rocks, 250</td>
</tr>
<tr>
<td>self-assessment, 138–9</td>
</tr>
<tr>
<td>set of methods and processes, science as, 94</td>
</tr>
<tr>
<td>sharing ‘activities that work’, 26</td>
</tr>
<tr>
<td>Shelley, G., 76</td>
</tr>
<tr>
<td>Shoemaker, B., 146, 147</td>
</tr>
<tr>
<td>Shulman, L.S., 75</td>
</tr>
<tr>
<td>Slowmation, 120, 140</td>
</tr>
<tr>
<td>Smith, C., 186</td>
</tr>
<tr>
<td>Smith, K. V., 4</td>
</tr>
<tr>
<td>social construction of knowledge, 2, 8–10</td>
</tr>
<tr>
<td>social constructs, 210</td>
</tr>
<tr>
<td>socio-cultural view of learning, 101</td>
</tr>
<tr>
<td>socio-scientific issues (SSIs), 61, 97, 98, 103, 222</td>
</tr>
<tr>
<td>socio-scientific realities, 54</td>
</tr>
<tr>
<td>sustainability as, 59–61</td>
</tr>
<tr>
<td>solids, 198–9</td>
</tr>
<tr>
<td>standardised tests, 43</td>
</tr>
<tr>
<td>Status and Quality of Teaching and Learning of Science in Australian</td>
</tr>
<tr>
<td>Schools, The, 7</td>
</tr>
<tr>
<td>Stephen, J., 175</td>
</tr>
<tr>
<td>stream health, 80–2</td>
</tr>
<tr>
<td>student engagement, 35–7, 40</td>
</tr>
<tr>
<td>student researchers, 62</td>
</tr>
<tr>
<td>students</td>
</tr>
<tr>
<td>as agents of change, 56, 67, 68</td>
</tr>
<tr>
<td>as citizen scientists, 14–15</td>
</tr>
<tr>
<td>empowerment of, 61</td>
</tr>
<tr>
<td>everyday worlds of, 55–6</td>
</tr>
<tr>
<td>motivation, to learn science, 32–3, 34–5</td>
</tr>
<tr>
<td>prior knowledge and experiences, 134–6</td>
</tr>
<tr>
<td>self-assessment, 138–9</td>
</tr>
<tr>
<td>substances, 190</td>
</tr>
<tr>
<td>description of, 191–4</td>
</tr>
<tr>
<td>explanatory models, 194</td>
</tr>
<tr>
<td>properties of, 194–7</td>
</tr>
<tr>
<td>state of, 193</td>
</tr>
<tr>
<td>substantive science discourses, 121</td>
</tr>
<tr>
<td>summative assessment, 128, 129, 132, 139–40</td>
</tr>
<tr>
<td>sustainability</td>
</tr>
<tr>
<td>ecological, 59</td>
</tr>
<tr>
<td>as socio-scientific reality, 59–61</td>
</tr>
<tr>
<td>technological, 59</td>
</tr>
<tr>
<td>tables, for representing information, 113–14</td>
</tr>
<tr>
<td>talk, and student learning, 136</td>
</tr>
<tr>
<td>talking about science, 111, 120–4</td>
</tr>
<tr>
<td>exploratory conversations, 121</td>
</tr>
<tr>
<td>task sequencing, 133</td>
</tr>
<tr>
<td>teacher content knowledge. See scientific content knowledge</td>
</tr>
<tr>
<td>teachers</td>
</tr>
<tr>
<td>assessment practices, 141</td>
</tr>
<tr>
<td>‘bags of tricks’, 209</td>
</tr>
<tr>
<td>beliefs about students, 46, 47</td>
</tr>
<tr>
<td>pedagogical expertise, 3–4</td>
</tr>
<tr>
<td>primary teachers, expertise, 7</td>
</tr>
<tr>
<td>reasons for learning science, 4</td>
</tr>
<tr>
<td>reluctance to teach science, 4</td>
</tr>
<tr>
<td>restricted understanding of science, 25</td>
</tr>
<tr>
<td>scientific knowledge, 24</td>
</tr>
<tr>
<td>team work, 8, 25–7, 255–7</td>
</tr>
<tr>
<td>teaching</td>
</tr>
<tr>
<td>constructivist approach to, 229, 251</td>
</tr>
<tr>
<td>errors, 216</td>
</tr>
<tr>
<td>technological pedagogical content knowledge (TPCK), 75</td>
</tr>
<tr>
<td>technological sustainability, 59</td>
</tr>
<tr>
<td>tectonic plate movement, 119–20</td>
</tr>
</tbody>
</table>
Thinking Together project, 122
Tiakiwai, S., 46
Treagust, D., 118
Trends in International Mathematics and Science Study (TIMSS), 129
trust, in primary science classroom, 11–12
TWLH chart, 131, 171–2
Tytler, R., 11, 137, 201
Ulu, C., 111
validity
of assessment, 142
of results, 31
Victorian Essential Learning Standards (VELS), 151
Arts, 153
Design, Creativity and Technology, 153
English, 153
Health and Physical Education, 153
visual conventions, 111, 112
volatiles, 222
volcanoes, 222
Vygotsky, L.S., 57
See also everyday concept formation, scientific concept formation
Waldrip, B., 201
Walczek, T.M., 68, 159
water cycle. See hydrological/water cycle
water wise practices, 61
way of knowing, 94
Web 2.0, 74
whole community approach, 67
whole school approach, 63
Willow, C., 55
Wiser, M., 186
wonder walls, 36
Wood, R., 73
word walls, 172, 191
World Wide Web (WWW), 74
writing about science, 124–5
See also journalling in science
Zajicek, J.M., 68, 159