Learning and Teaching Primary Science

Learning and Teaching Primary Science brings primary science to life through the stories and experiences of preservice and practising teachers. It explores the roles of the teacher and the learner of science within the primary school context, and examines the major issues and challenges for preservice teachers in science education, including: engaging diverse learners, utilising technology, assessment and reporting, language and representation, and integration in the ‘crowded curriculum’.

Each chapter contains numerous examples, activities and reflective questions to help readers create relevant and meaningful lesson plans. Dedicated chapters for the areas of biology, chemistry, Earth and environmental science, and physics will give confidence to those without a science background. Practical approaches, strategies and skills are underpinned by relevant theories and evidence-based research.

Written by experts from Australia and New Zealand, *Learning and Teaching Primary Science* is an essential resource for those beginning their journey of teaching science in the primary school classroom.

Angela Fitzgerald is a lecturer at Monash University.
<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>ENGAGING ALL LEARNERS IN SCIENCE</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimberley Wilson and Brian Lewthwaite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>The science curriculum and diverse learners</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>A pedagogical framework for culturally responsive teaching</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Questions for consideration</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Further reading</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>MAKING LINKS BETWEEN SCIENCE AND THE LEARNER’S WORLD</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy Cutter-Mackenzie and Marianne Logan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Students’ everyday worlds</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Everyday science</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Exploring everyday concepts alongside scientific concepts</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Sustainability as a socio-scientific reality</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Participatory case studies in practice</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Putting theory into practice in the primary classroom</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Questions for consideration</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Further reading</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>CAPTURING THE INTEREST OF THE TECHNOLOGICALLY SAVVY SCIENCE LEARNER</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>P John Williams and Mike Forret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Positioning ICT</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Exploring ICT</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>ICT-enhanced learning in science</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Illustrative examples</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Questions for consideration</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Further reading</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>
Contents

PART II THINKING LIKE A TEACHER OF PRIMARY SCIENCE

CHAPTER 6 GRAPPLING WITH TEACHING SCIENCE AS CONTENT, PROCESS AND HUMAN ENDEAVOUR

Rena Heap

- Introduction
 - 92
- Children’s view of scientists
 - 92
- Society’s view of scientists
 - 93
- The myths we can all hold
 - 93
- So what is science?
 - 94
- Science as content
 - 96
- Science as process
 - 101
- Science as a human endeavour, and the nature of science
 - 103
- Summary
 - 106
- Questions for consideration
 - 107
- Further reading
 - 108

CHAPTER 7 TOOLS FOR SUPPORTING THE LEARNING AND TEACHING OF SCIENCE

Karen Murcia

- Introduction
 - 110
- Multimodal communication and science
 - 110
- Representations of science
 - 112
- Linking representations from everyday experience to an investigation
 - 113
- Classroom action: Investigating forces in flight
 - 114
- Classroom action: Explaining what causes day and night
 - 117
- Classroom action: Representing tectonic plate movement
 - 119
- Talking science
 - 120
- Journaling in science
 - 124
- Summary
 - 125
- Questions for consideration
 - 126
- Further reading
 - 126
Contents

CHAPTER 8 LEARNING AND TEACHING SCIENCE THROUGH ASSESSMENT 127

Bronwen Cowie

Introduction 128
Purposes for classroom assessment 128
Assessment in action within science inquiry 130
Classroom assessment in the service of learning and teaching 132
Thinking further about summative assessment 139
Teachers make assessment happen 140
Summary 142
Questions for consideration 143
Further reading 144

CHAPTER 9 INTEGRATION AND INNOVATION IN TEACHING SCIENCE 145

Wan Ng

Introduction 146
Curriculum integration 146
Intradisciplinary science curriculum 147
Interdisciplinary curriculum 151
An inquiry-based approach to integrating learning across the curriculum: A case study with preservice primary teachers 155
Benefits of and issues with integrated curricula 156
Summary 160
Questions for consideration 160
Further reading 161

PART III PUTTING PRIMARY SCIENCE INTO PRACTICE 163

CHAPTER 10 LIVING WORLD: LEARNING AND TEACHING BIOLOGY 165

Prem Kurup

Introduction 166
Situating biology learning and teaching in primary schools 166
Curriculum requirements 167
Introducing the 5E model 169
A learning journey 171
Summary 182
Questions for consideration 183
Further reading 183
CHAPTER 11 MATERIAL WORLD: LEARNING AND TEACHING CHEMISTRY

Gail Chittleborough and Peter Hubber

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>186</td>
</tr>
<tr>
<td>Matter in the primary curriculum</td>
<td>187</td>
</tr>
<tr>
<td>Ideas about matter</td>
<td>188</td>
</tr>
<tr>
<td>Solids, liquids and gases: The three physical states of matter</td>
<td>198</td>
</tr>
<tr>
<td>Teaching abstract concepts like matter</td>
<td>200</td>
</tr>
<tr>
<td>Summary</td>
<td>206</td>
</tr>
<tr>
<td>Questions for consideration</td>
<td>206</td>
</tr>
<tr>
<td>Further reading</td>
<td>207</td>
</tr>
</tbody>
</table>

CHAPTER 12 PLANET EARTH AND BEYOND: LEARNING AND TEACHING EARTH AND SPACE SCIENCES

Leah Moore

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>But I was terrible at science in school!</td>
<td>209</td>
</tr>
<tr>
<td>Getting the balance right</td>
<td>210</td>
</tr>
<tr>
<td>Teaching to the curriculum</td>
<td>211</td>
</tr>
<tr>
<td>Summary</td>
<td>223</td>
</tr>
<tr>
<td>Questions for consideration</td>
<td>224</td>
</tr>
<tr>
<td>Further reading</td>
<td>225</td>
</tr>
</tbody>
</table>

CHAPTER 13 PHYSICAL WORLD: LEARNING AND TEACHING PHYSICS

John Kenny and Marj Colvill

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>Forces in the Australian and New Zealand science curricula</td>
<td>227</td>
</tr>
<tr>
<td>Using this chapter</td>
<td>227</td>
</tr>
<tr>
<td>Exploring your own thinking about forces</td>
<td>228</td>
</tr>
<tr>
<td>Looking for and representing forces in everyday life</td>
<td>230</td>
</tr>
<tr>
<td>Building understanding about forces</td>
<td>231</td>
</tr>
<tr>
<td>Key points to consider about forces</td>
<td>234</td>
</tr>
<tr>
<td>Building on our understanding of forces: Balanced forces and stationary objects</td>
<td>235</td>
</tr>
<tr>
<td>Floating objects: A further exploration of balanced forces</td>
<td>238</td>
</tr>
<tr>
<td>Extending understanding: Force pairs</td>
<td>240</td>
</tr>
<tr>
<td>Forces and motion</td>
<td>243</td>
</tr>
</tbody>
</table>
List of figures

1.1 A diagrammatical representation of teacher thinking about science learning and teaching
 page 9

2.1 Teachers’ reasons for learning science
 23

2.2 Teachers’ perceptions about features of science
 24

2.3 Teachers’ perceptions about practical barriers to teaching science
 28

2.4 Use of informal units and comparative measurements:
 Child measuring with string
 30

2.5 Use of informal units and comparative measurements:
 Child bouncing a ball
 30

2.6 Children engaged in exploring feathers
 33

2.7 A science table can generate student interest
 35

2.8 A wonder wall encourages students to ask questions
 36

3.1 Pedagogical framework for informing culturally responsive teaching of science
 46

4.1 The ecological techno-subsystem
 55

4.2 Hart’s (1992) Ladder of Participation
 60

7.1 Symbolic image of a molecule of water
 112

7.2 Interactive digital bar graph with linked photo of the furthest-flying paper plane
 115

7.3 Annotated image of airflow over an aeroplane’s wing
 116

7.4 A student’s multimodal representation of day and night
 117

7.5 3D model of plate movement
 119

7.6 A multimodal science word wall combining objects, words and questions
 125

9.1 One model of a solar cooker
 154

10.1 An example of a TWLH chart
 172

10.2 An example of a word wall (1)
 172

10.3 An example of a word wall (2)
 173

10.4 A student representation of the living world (1)
 174

10.5 A student representation of the living world (2)
 174

10.6 Example of a context related to exploring a local environment (1)
 176
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>Example of a context related to exploring a local environment (2)</td>
<td>176</td>
</tr>
<tr>
<td>10.8</td>
<td>Example of a fair test investigation examining the factors impacting on plant growth set up in a classroom</td>
<td>177</td>
</tr>
<tr>
<td>10.9</td>
<td>Example of a context for applying conceptual understandings and making informed decisions</td>
<td>179</td>
</tr>
<tr>
<td>10.10</td>
<td>Two preservice primary teachers working with primary-aged students on learning and teaching a biology unit of work (1)</td>
<td>181</td>
</tr>
<tr>
<td>10.11</td>
<td>Two preservice primary teachers working with primary-aged students on learning and teaching a biology unit of work (2)</td>
<td>181</td>
</tr>
<tr>
<td>11.1</td>
<td>The concept of material</td>
<td>189</td>
</tr>
<tr>
<td>11.2</td>
<td>A word wall in a Year 4 primary classroom</td>
<td>191</td>
</tr>
<tr>
<td>11.3</td>
<td>A diagram distinguishing pure and impure materials</td>
<td>192</td>
</tr>
<tr>
<td>11.4</td>
<td>Descriptions of the three physical states of a substance at the macroscopic level (what you see) and submicroscopic level (particles) – solid, liquid and gas</td>
<td>196</td>
</tr>
<tr>
<td>11.5</td>
<td>Work sample from a 10-year-old student, with observations about understandings of the properties of matter</td>
<td>200</td>
</tr>
<tr>
<td>11.6</td>
<td>Representation from a 10-year-old student of the mixing of salt with water</td>
<td>202</td>
</tr>
<tr>
<td>11.7</td>
<td>Representation from a 10-year-old student of the mixing of sugar with water</td>
<td>202</td>
</tr>
<tr>
<td>11.8</td>
<td>Report from a 10-year-old student on a disappearing handprint investigation</td>
<td>204</td>
</tr>
<tr>
<td>11.9</td>
<td>Responses from two 10-year-old students to two pre-test questions about water</td>
<td>205</td>
</tr>
<tr>
<td>12.1</td>
<td>The hydrologic cycle as drawn by Manu, a Year 4 (8-year-old) student from an Australian primary school</td>
<td>218</td>
</tr>
<tr>
<td>13.1</td>
<td>Representation of forces acting on a swivel chair (1)</td>
<td>232</td>
</tr>
<tr>
<td>13.2</td>
<td>Representation of forces acting on a swivel chair (2)</td>
<td>232</td>
</tr>
<tr>
<td>13.3</td>
<td>Representation of forces acting on a swivel chair (3)</td>
<td>233</td>
</tr>
<tr>
<td>13.4</td>
<td>Considering the forces acting on a basketball being held aloft</td>
<td>235</td>
</tr>
<tr>
<td>13.5</td>
<td>Considering the forces acting on a cup sitting on a table</td>
<td>236</td>
</tr>
</tbody>
</table>
List of figures

13.6 Representation of forces acting on a cup sitting on a table 236
13.7 Forces acting on a stationary ball 237
13.8 Forces acting on a falling ball 237
13.9 Considering the forces acting on a floating ball 238
13.10 Representation of forces acting on a floating ball (1) 239
13.11 Representation of forces acting on a floating ball (2) 239
13.12 Representation of forces acting on a floating ball (3) 240
13.13 Representation of the force pair present in a tug of war 240
13.14 Representation of forces acting in a tug of war game (1) 241
13.15 Representation of forces acting in a tug of war game (2) 241
13.16 Representation of forces acting on two interlocked hairbrushes 242
13.17 Representation of forces acting when opening a bottle 242
13.18 Tennis ball and ramp 243
13.19 Representation of the forces acting on a ball moving on different surfaces 245
List of tables

3.1 Attributes of culturally responsive teachers of science page 47

4.1 Examples of how hands-on activities can be implemented into the science curriculum with a context-based focus 69

6.1 Comparing the science components of the Australian and New Zealand curriculum documents 95

9.1 An example of intradisciplinary integration of science concepts associated with the Sun, based on the Australian and New Zealand curricula 148

9.2 An example of an interdisciplinary curriculum around the theme of the Sun for Year 3 students, based on the Victorian Essential Learning Standards (VELS) 152

9.3 Collective questions preservice teachers asked about corn and popping corn 157

9.4 Examples of topics and activities that could be integrated into the theme of Corn and Popping Corn 158

10.1 5E phases mapped against main objectives and appropriate activities 170

11.1 Australian Curriculum scope and sequence for Chemical Sciences: Foundation to Year 6 187

11.2 Selected content from the New Zealand primary science Curriculum: The Material World strand (Levels 1 to 4) 188

11.3 Mixtures and some possible constituent substances 193

11.4 Descriptions of observed phenomena and explanations using the particle model 196

11.5 Samples of students’ observations from their science journals 199

12.1 Australian and New Zealand Science Curriculum statements for Earth and space sciences in the foundation years of primary school 212

12.2 Australian and New Zealand Science Curriculum statements for Earth and space sciences in the early years of primary school 214
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3</td>
<td>Australian and New Zealand Science Curriculum statements for Earth and space sciences in the middle years of primary school</td>
<td>218</td>
</tr>
<tr>
<td>12.4</td>
<td>Australian and New Zealand Science Curriculum statements for Earth and space sciences in the senior years of primary school</td>
<td>221</td>
</tr>
<tr>
<td>13.1</td>
<td>Your prior knowledge about forces</td>
<td>228</td>
</tr>
</tbody>
</table>
Contributors

About the editor: Angela Fitzgerald is currently employed as a lecturer at Monash University where she specialises in science teacher education and classroom-based research. She worked as a secondary school science teacher in country Victoria before moving to Western Australia to complete her PhD studies in primary science education.

Dayle Anderson combines her passion for primary teaching and science in her work as a senior lecturer in primary science and mathematics education at Victoria University of Wellington. Her doctorate and current research focus on primary science learning and teaching. She worked as a biochemist before moving into primary teaching.

Gail Chittleborough is a senior lecturer in science education at Deakin University. She is a chief investigator on two Australian Research Council grants in science education. Gail is part of the Deakin University science education team who wrote and delivered two professional development programs that focus on building teachers’ capacity in teaching science.

Marj Colvill is currently employed by the Tasmanian Department of Education as a Principal Education Officer. She has worked in many Tasmanian primary schools and has also lectured in primary science at the University of Tasmania. She has been recognised for excellence in primary science teaching and holds a doctorate of science education.

Bronwen Cowie is the director of the Wilf Malcolm Institute of Educational Research, The University of Waikato. Her research interests include formative assessment, culturally responsive pedagogy and curriculum implementation. Her research has spanned projects that include long-term national evaluation studies and indepth classroom studies involving surveys, focus groups and observation.

Amy Cutter-Mackenzie is an Associate Professor in Sustainability, Environment and Education in the School of Education at Southern Cross University. She is also the Director of Research for the School of Education. Amy commenced her career as a primary school teacher in Queensland and later moved into academia after completing her PhD.

Mike Forret holds a joint position in the Faculty of Education and the Technology, Environmental, Mathematics and Science Education Research Centre at the University of Waikato. He has a background in teaching secondary science and his research interests lie in developing effective learning environments in general, and digitally mediated learning environments in particular.

Dawn Garbett is an Associate Professor and science teacher educator at the University of Auckland. She teaches early childhood, primary and secondary preservice teachers.
Contributors

research interests are in practitioner research and self-study. In 2008, she won a national Tertiary Teaching Excellence award for sustained excellence.

Rena Heap has been lecturing at the University of Auckland since 2004, during which time she has won Faculty, University and national awards for teaching. She previously taught across a wide range of levels in primary schools throughout New Zealand. Rena specialises in science education and practitioner research.

Peter Hubber is currently a senior lecturer in science education at Deakin University. He has 25 years experience as a secondary science teacher. Apart from teaching in the preservice and postgraduate teaching programs, Peter has a research profile in the role of representation in the teaching and learning of science.

John Kenny is a senior lecturer in science education at the University of Tasmania. He taught physics and science in Victorian schools before becoming an education consultant. John gained his PhD from RMIT University in 2005 and moved to UTAS to re-develop the primary science courses in the teacher education programs.

Prem Kurup is currently a lecturer in science education at Latrobe University, Bendigo, teaching primary science education units. Prem did his doctorate at Edith Cowan University in Perth, and has secondary and tertiary science teaching experience in Australia and India.

Brian Lewthwaite is an Associate Professor in teacher education at James Cook University in Townsville, Queensland. His research interests include science education, teacher professional development, and learning environment research. Brian has worked on a number of long-term science education research projects with teachers, students and community members in Aboriginal communities.

Marianne Logan is currently working as a lecturer in early childhood and primary science and technology education. She has conducted research in the area of students’ attitudes to, and interest in, science. Marianne has a background in early childhood, primary and secondary science teaching, and completed her PhD at Southern Cross University (SCU).

Azra Moeed is a curriculum leader and senior lecturer in science at the Faculty of Education, Victoria University of Wellington. She taught in early childhood, primary and secondary schools before becoming a teacher educator. Her research interests include science education, science teacher education, and environmental education.

Leah Moore is a scientist and teacher, originally from New Zealand, now based in Canberra where she is an Associate Professor at the University of Canberra. She specialises in Earth
Contributors

and environmental science, and science teacher education. Leah is a member of the National Advisory Panel for Science for the development of the Australian Curriculum.

Karen Murcia is an Associate Professor in science education at Edith Cowan University, Convenor of the Mathematics and Science Teaching and Research Group, and Course Coordinator for Primary Education. She has an established track record of research related to science education, scientific literacy, and digital education technology and pedagogy.

Wan Ng is an Associate Professor in science education and technology-enabled learning and teaching at the University of New South Wales. She has 10 years of school teaching experience and specialises in both primary and secondary teacher education. She researches in technology-supported pedagogy, mainly in science and gifted education.

Kathy Smith is an education consultant undertaking various roles: science resource officer with the Catholic Education Office, Melbourne; project work with the Faculty of Education, Monash University; and school-based consultancy. She is also currently a PhD student at Monash University. Kathy is an experienced primary teacher and her research interests include teacher thinking, professional learning and pedagogy.

P John Williams is Director of the Technology, Environmental, Mathematics and Science Education Research Centre at the University of Waikato. As part of his work as an Associate Professor, he teaches and supervises research students in technology education.

Kimberley Wilson is a primary school teacher with postgraduate qualifications in Community Development. She has worked in partnership with the Edmund Rice Education Australia Flexible Learning Centre Network for the past five years in the context of a project titled ‘Re-Engaging Disadvantaged Youth Through Science’, funded by the Australian Research Council.
Preface

When I first started the development of this book, my intent was to deliver a ‘good news story’ about primary science learning and teaching. The focus was to tap into what primary school teachers characteristically do really well – that is, create conditions for meaningful learning – and apply this lens to the science learning area. This, in fact, is not a difficult job. Science sits comfortably in primary classrooms because as a discipline it requires a sense of curiosity and creativity; it promotes questioning and invites critical examination; it has the potential to spark the interest of an individual, but also requires a collaborative approach. Essentially, the learning of science is perfectly suited to the ways in which primary school teachers already approach their practice and nurture student learning. However, such rich approaches have been continually challenged by age-old traditions which perpetuate the idea that school-based science learning and teaching should be about a teacher delivering content as a series of indisputable facts for students to memorise and regurgitate. As a result, teachers have been lead to believe, particularly through their own educational experiences, that this teacher-directed model is how science should be learnt and taught. Unfortunately, compliance with this thinking has produced a version of school science that is largely out of step with the ways scientists actually practise science, and with the ways in which we best learn.

This book aims to open up and challenge primary school teachers to rethink such traditional approaches to science learning and teaching. Whether they are at the start of their journey to becoming a teacher or towards the end of their career, the book encourages all primary teachers to reconnect with pedagogy that enhances effective learning in science. At the heart of the stories presented here is a belief that primary teachers can move beyond traditional notions about what science in schools should be, to recognising that what they currently value in their teaching practices is applicable and relevant to what science learning and teaching could be.

The authors present stories from people across Australia and New Zealand who are passionate about primary science education and interested in sharing their expertise and experiences with primary school teachers. These stories have evolved into three distinct sections: looking at learners of primary science; thinking like a teacher of primary science; and putting primary science into practice.

In looking at what it means to be a primary science learner, Dayle Anderson and Azra Moeed’s chapter acknowledges the barriers that may be faced when engaging students with science (chapter 2). Equally important is the need to consider the ways in which the diverse needs, experiences and backgrounds of students can be embraced and appropriately incorporated into our science practices, as outlined by Kimberley Wilson and Brian Lewthwaite (chapter 3). To assist in addressing these needs, Amy Cutter-Mackenzie and Marianne Logan outline ways of making science
Preface

relevant for learners and their lives (chapter 4), and John Williams and Mike Forret tap into the technologically savvy nature of students (chapter 5).

To think like a primary science teacher requires some grounding in the nature of science as a conceptual area, a process and a construct that is influenced by human endeavour, which is provided through Rena Heap’s work (chapter 6). From this point, Karen Murcia considers some of the teaching tools or approaches that best support science learning and teaching (chapter 7) and Bronwen Cowie explores the important role that assessment can play in developing science understandings and knowledge (chapter 8). Particularly important for primary school teachers is the ability to integrate and innovate the curriculum within their classrooms – a challenge which Wan Ng examines in relation to the science learning area (chapter 9).

In putting science into practice in the primary classroom, the focus turns to the four overarching conceptual areas of science. Different terminology is used for these in the Australian and New Zealand curriculum documents, but essentially they are biology (chapter 10), chemistry (chapter 11), Earth and environmental science (chapter 12) and physics (chapter 13). These chapters, developed by Prem Kurup; Gail Chittleborough and Peter Hubber; Leah Moore; and John Kenny and Marj Colvill, respectively, offer practical approaches and strategies for implementing coherent lessons across the primary school years relevant to these particular conceptual areas. They are aimed at developing appropriate procedural skills as well as raising awareness about the values and attitudes that impact on our science understandings.

The introduction and conclusion provide bookends for these chapters. Kathy Smith and I set the scene by inviting a rethink of the purpose of science education in primary schools (chapter 1), while Dawn Garbutt assists in imagining what the stories shared throughout this book might mean for classroom practice (chapter 14).

As you read through the book, you will recognise the unique contribution that arises from this particular combination of voices, backgrounds and experiences, but in creating the overall story, they contribute to one key message: be open to thinking differently about primary science. As a teacher of primary school science, you are also a learner. This, of course, can be daunting, confronting and uncomfortable; however, you need to be willing to shift your thinking, embrace change and expect the unexpected. By applying the ideas explored through this book to an already well-developed understanding of appropriate primary teaching practices, you will find that you are able to bring science learning and teaching to life for your students and yourself.

Angela Fitzgerald
Monash University
December 2012