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John Williams Calkin: a short biography

Seppo Hassi, Henk de Snoo and Franciszek Hugon Szafraniec

All employees at Los Alamos had Project Y secu-

rity badges. Calkin’s photograph1 is one of these

badge photos.

John Williams Calkin (October
11, 1909–August 5, 1964). A native of
New Rochelle, N.Y., he graduated with
honors in mathematics from Columbia
University in 1933. He was awarded
his MA in 1934 and his PhD in June
1937 by Harvard University. His PhD
dissertation, Applications of the The-
ory of Hilbert Space to Partial Differ-
ential Equations; the Self-Adjoint Trans-
formations in Hilbert Space Associated
with a Formal Partial Differential Op-
erator of the Second Order and Ellip-
tic Type, was written under the direc-
tion and at the suggestion of M.H. Stone;
fruitful conversations with J. von Neu-
mann were acknowledged. In the fall
of 1937 Calkin went to the Institute
for Advanced Study in Princeton on a

year’s fellowship to work with O. Veblen
and J. von Neumann. He later served
as an assistant professor at the Uni-
versity of New Hampshire and the Illi-
nois Institute of Technology in Chicago.
During World War II Calkin was part
of a mine warfare operations analysis
group with J.L. Doob, J. von Neumann,
and M.H. Stone2. Von Neumann and
Calkin worked on shock waves and dam-
age by explosives; they were sent to Eng-
land to learn of the progress under way
there. When it appeared that their spe-
cial knowledge would be useful for the
Manhattan Project, they moved to Los
Alamos. The Los Alamos Laboratory, or
Project Y, had come into existence in
early 1943 for a single purpose: to de-
sign and build an atomic bomb. Calkin
remained there until 1946 when he ac-
cepted a Guggenheim fellowship at the
California Institute of Technology. He
later taught at the Rice Institute in
Houston before returning to Los Alamos
in 1949 as a member of the theoretical di-
vision. In 1958, he accepted a consulting
appointment at New York University and
at Brookhaven National Laboratory and,
in 1961, was named head, and then chair-
man of the Applied Mathematics Depart-
ment. He died3 4 in Westhampton, N.Y.,
at the age of 54.

Calkin’s publications date back to the
time before he joined the war effort. We
have not been able to find other pub-
lished mathematical work. The list con-
sists of the following papers:

• Abstract self-adjoint boundary con-
ditions, Proc. Nat. Acad. Sci., 24

(1938), 38–42.
• General self-adjoint boundary condi-

tions for certain partial differential

www.cambridge.org/9781107606111
www.cambridge.org


Cambridge University Press
978-1-107-60611-1 — Operator Methods for Boundary Value Problems
Edited by Seppo Hassi , Hendrik S. V. de Snoo , Franciszek Hugon Szafraniec 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 S. Hassi, H.S.V. de Snoo and F.H. Szafraniec

operators, Proc. Nat. Acad. Sci., 25

(1939), 201–206.
• Abstract symmetric boundary condi-

tions, Trans. Amer. Math. Soc., 45

(1939), 369–442.
• Abstract definite boundary value

problems, Proc. Nat. Acad. Sci., 26

(1940), 708–712.
• Functions of several variables and ab-

solute continuity I, Duke Math. J., 6
(1940), 170–186.

• Symmetric transformations in Hilbert
space, Duke Math. J., 7 (1940), 504–
508.

• Two-sided ideals and congruences in
the ring of bounded operators in
Hilbert space. Ann. Math., 42 (1941),
839–873.

Today, Calkin is mostly remembered
for the algebras bearing his name; the rel-
evant work dates back to 1941. However,
it is clear that this work was directly in-
fluenced by his earlier work on bound-
ary value problems. After World War II
Calkin did not return to his earlier work,
but remained involved in applied math-
ematics and physics both at Los Alamos
and at Brookhaven National Laboratory.

The environmentalist Brant Calkin5

(1934) writes us about his father: “My
most vivid memories of him were while
we were living at Los Alamos, the atomic
bomb laboratory which we first went to
in 1943. There was of course no opportu-
nity to visit him at work, since all the
offices were behind security fences pa-
trolled by the army. It was there that I
can remember the long lasting and rau-
cous poker games which we often hosted.
What games those must have been. Play-
ers included Stan Ulam, Nick Metropolis,
Carson Mark, and occasionally, I think,
Enrico Fermi and John von Neumann.
The latter, someone my dad had worked
with at Princeton. Much earlier, we lived
in Chicago, where my father haunted ob-
scure and mostly black night clubs where
he loved the jazz, and where he met
singers who later became famous. His
love of jazz resulted in the music which
we mostly heard in our house at that
time. His contacts were esoteric, and in
the late 50s he invited me to join him
at a New York City jazz club. There, he
greeted a famous drummer by first name
and with whom he had played chess. He

was not a car fan, but he had fondness for
them. In Chicago, he once walked out to
buy some groceries and came back with
a used car.”

Another glimpse of the man Calkin is
provided by S.M. Ulam6. When Ulam
and his wife traveled to New Mexico
by train he was infinitely surprised to
see Calkin, whom he had known from
Chicago, waiting at the whistle-stop to
drive them to Los Alamos: “He was a
tall, pleasant-looking, man with more
savoir-faire than most mathematicians”,
and Ulam continues describing life in Los
Alamos, including discussions with von
Neumann and Calkin.

1 c© Copyright 2011 Los Alamos
National Security, LLC. All rights
reserved.

2M.H. Stone, Review: Steve J. Heims,
John von Neumann and Norbert
Wiener, from mathematics to the
technologies of life and death, Bull.
A.M.S. (N.S.), 8, (1983), 395–399.

3John W. Calkin, a mathematician,
The New York Times, August 6,
1964.

4John W. Calkin, Phys. Today, 17,
1964, 102–105.

5Brant Calkin, personal
communication.

6S.M. Ulam, Adventures of a
mathematician, University of
California Press, 1991.
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On Calkin’s abstract symmetric boundary
conditions

Seppo Hassi and Rudi Wietsma

Abstract J.W. Calkin introduced in the late 1930s the concept of a re-
duction operator in order to investigate (maximal) symmetric extensions of
symmetric operators. A precise interpretation of reduction operators can be
given using Krĕın space terminology; this simultaneously connects his work
with recent investigations on boundary triplets. Here an overview of his main
results on reduction operators is given, with emphasis on the more involved
unbounded case. In particular, by extending a domain decomposition of re-
duction operators from [Calkin, 1939a] into a graph decomposition and using
Krĕın space methods, simplified proofs for most of his main results are given.

2.1 Introduction

In order to investigate boundary value problems appearing in connection

with ordinary and partial differential equations, see e.g. [Calkin, 1939b],

Calkin introduced in the end of the 1930s the concept of a reduction

operator in [Calkin, 1939a]; Definition 2.1 below contains a slightly re-

formulated form of his notion.

Definition 2.1 Let S be a closed linear operator in a Hilbert space

(H, (·,−)H) and assume that S is densely defined. Then a closed linear

operator U with domain in the graph of S∗ and with range in a Hilbert

space (K, (·,−)K) is said to be a reduction operator for S∗ if:

(i) domU = grS∗;

(ii) there exists a unitary operator W in (K, (·,−)K) such that

(grU)⊥ = {{S∗f,−f,WU{f, S∗f}} : {f, S∗f} ∈ domU}.

Here K is called the range space of U and W is called the rotation

associated with U .
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The assumption that S is densely defined in Definition 2.1 means

that S∗ exists as an operator; this prevents the use of linear relations.

Without this condition all the theory that follows holds without essential

changes. However, as in Calkin’s original paper, here only the densely

defined case is considered.

Next observe that condition (ii) in Definition 2.1 implies the following

(abstract) Green’s (or Lagrange’s) identity:

(f, S∗g)H − (S∗f, g)H=(WU{f, S∗f}, U{g, S∗g})K, (2.1)

where {f, S∗f}, {g, S∗g} ∈ domU . This equality shows in particular that

kerU = grS and, hence, S is a closed symmetric operator.

The main problems investigated in [Calkin, 1939a] can be roughly

formulated as follows:

(i) investigate the cardinality and type of maximal symmetric exten-

sions of S whose graph is contained in the domain of a reduction

operator for S∗;

(ii) determine necessary and sufficient conditions on a subspace belong-

ing to the range of the reduction operator for its pre-image under

the reduction operator to be maximal symmetric;

(iii) describe the pathology of unbounded reduction operators.

It is the purpose of this chapter to give an overview of Calkin’s an-

swers to the above questions. It should be noted that concepts which

are essentially special cases of Calkin’s reduction operator have been in-

troduced in later literature. For instance, the widely known concept of

a boundary triplet (or boundary value space), see [Gorbachuk and Gor-

bachuk, 1991] and the references therein, can be considered as a bounded

reduction operator with a suitable choice of the rotation W . In partic-

ular, this means that Calkin’s results for bounded reduction operators,

i.e. for reduction operators with domU = S∗, have in special cases been

rediscovered in later works; for further details see Chapter 7 and the

references therein. In this overview the main focus will be on the more

complicated unbounded case. In order to make Calkin’s results more

accessible, they are here reformulated using Krĕın space terminology,

which is a natural framework for his investigation. Furthermore, simpli-

fied proofs are included for the main statements by extending the central

result from [Calkin, 1939a]. In addition, it is shown how the concept of a

reduction operator is connected to modern day equivalent objects used

in the extension theory of symmetric operators.

The contents of the chapter are now outlined. Section 2 contains some
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preliminary results on operators (relations) in Krĕın spaces. In Section

3 reduction operators are investigated: their connection to (unitary)

boundary triplets is made explicit, they are characterized and a clas-

sification of them is introduced. In Section 4, Calkin’s answers to the

above mentioned questions are presented.

The idea for writing this overview of Calkin’s 1939 paper entitled “Ab-

stract symmetric boundary conditions” came from Vladimir Derkach’s

lecture “Survey of boundary triplets and boundary relations” given dur-

ing a workshop at the Lorentz Center in Leiden, the Netherlands (De-

cember 14–18, 2009). That lecture included a short survey of Calkin’s

work as can be found in Chapter 7.

2.2 Preliminaries

The notion of a Krĕın space is recalled including a short introduction

to relations in such spaces, see [Azizov and Iokhvidov, 1989] for details.

In particular, definitions of (nonstandard) unitary operators in Krĕın

spaces and unitary boundary triplets are given; these objects, which are

used in the extension theory of symmetric operators, are later shown to

be closely related to reduction operators.

Krĕın spaces Let j be a fundamental symmetry, also called a signature

operator, in the Hilbert space (H, (·,−)), i.e., j is an everywhere defined

operator satisfying j∗ = j = j−1. Then the space H equipped with the

indefinite inner product (j ·,−), i.e. (H, (j ·,−)), is called a Krĕın space.

Note that the fundamental symmetry j induces an orthogonal decom-

position H+ + H− of H by H± = ker (I ∓ j) and that (H±,±(j·,−)) are

Hilbert spaces; this orthogonal decomposition of H is called the canonical

decomposition of (H, (·,−)) induced by j.

Example 2.2 For a Hilbert space (H, (·,−)) define jH on H2 as

jH{f, f
′} = {− if ′, if}, {f, f ′} ∈ H2. (2.2)

Then jH = (jH)
−1 = (jH)

∗, i.e., jH is a fundamental symmetric in

(H2, (·,−)). Consequently, (H2, (jH ·,−)) is a Krĕın space. Note that if

H+ + H− is the canonical decomposition of H2 induced by jH, then

H+ = ker (I − jH) = {{f, if} : f ∈ H},

H− = ker (I + jH) = {{f,− if} : f ∈ H}.
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Let L be a subspace of the Hilbert space (H, (·,−)) with fundamental

symmetry j and let [·,−] := (j·,−). Then L is called a positive, negative,

nonnegative, nonpositive or neutral subspace of (H, (j·,−)) if [f, f ] > 0,

[f, f ] < 0, [f, f ] ≥ 0, [f, f ] ≤ 0 or [f, f ] = 0 for every f ∈ L \ {0}, resp.

(Note that Calkin uses the notion of W -symmetry for neutrality, see

[Calkin, 1939a, Definition 1.3].) A neutral, nonnegative or nonpositive

subspace is called maximal neutral, maximal nonnegative or maximal

nonpositive if it has no neutral, nonnegative or nonpositive extension,

resp. In particular, maximal semi-definite (i.e., neutral, nonnegative or

nonpositive) subspaces are closed. If P± denotes the orthogonal projec-

tion onto H± in H with respect to (·,−) for a canonical decomposition

H++H− of (H, (j·,−)), then a nonnegative or nonpositive subspace L is

maximal if and only if P+L = H+ or P−L = H−, resp.

The orthogonal complements of L with respect to (·,−) and [·,−] :=

(j ·,−) are denoted by L⊥ and L[⊥]: they are the closed subspaces defined

as

L⊥ = {f ∈ H : (f, g) = 0 for all g ∈ L},

L[⊥] = {f ∈ H : [f, g] = 0 for all g ∈ L}.

Clearly, L[⊥] = jL⊥ = (jL)⊥. With the above notation, a subspace L is

neutral if and only if L ⊆ L[⊥]. For a neutral subspace L of (H, (j ·,−))

the abstract first von Neumann formula holds:

L[⊥] = clos (L) +̇ (L[⊥] ∩ H+) +̇ (L[⊥] ∩ H−), (2.3)

see [Azizov and Iokhvidov, 1989, Chapter 1 : 4.20]. Note that the first

von Neumann formula is nothing else than the canonical decomposition

for the Krĕın space (L[⊥] ⊖ closL, (j ·,−)) induced by the canonical de-

composition H+ +H− of (H, (j·,−)). For a neutral subspace L its defect

numbers n+(L) and n−(L) are defined as

n+(L) = dim(L[⊥] ∩ H−) = dim(H− ⊖ P−L);

n−(L) = dim(L[⊥] ∩ H+) = dim(H+ ⊖ P+L).
(2.4)

A neutral subspace is called hyper-maximal neutral if it is maximal non-

negative and maximal nonpositive, see [Azizov and Iokhvidov, 1989,

Chapter 1: Definition 4.15]. Equivalently, a neutral subspace L of the

Krĕın space (H, (j ·,−)) is hyper-maximal neutral if and only if L = L[⊥].

In other words, L is hyper-maximal neutral if and only if it induces the

following orthogonal decomposition of the Hilbert space (H, (·,−)):

H = L⊕ j L. (2.5)
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Operators in Hilbert spaces Let (H1, (·,−)1) and (H2, (·,−)2) be

Hilbert spaces. Then H is called a (linear) relation from H1 to H2 if

it is a subspace of H1 × H2; here and in what follows, linear operators

are usually identified with their graphs. In particular, H is closed if and

only if its graph, grH, is closed (as a subspace of H1×H2). The symbols

domH, ranH, kerH, and mulH stand for the domain, range, kernel,

and the multi-valued part of H, respectively. In particular, mulH = {0}

if and only if H is an operator. For a subspace L of domH, H(L) denotes

the subspace

H(L) = {f ′ ∈ H2 : {f, f ′} ∈ H for some f ∈ L}.

The inverse H−1 of a relation H is defined as

H−1 = {{f, f ′} ∈ H2 × H1 : {f ′, f} ∈ H}

and its adjoint H∗ is defined via

H∗ = {{f, f ′} ∈ H2 × H1 : (f ′, g)1 = (f, g′)2, {g, g′} ∈ H}. (2.6)

From this definition it follows that kerH∗ = (ranH)⊥2 and mulH∗ =

(domH)⊥1 . In particular, this shows that H∗ is an operator if and only

if domH = H1.

An operator U from the Hilbert space (H1, (·,−)1) to the Hilbert space

(H2, (·,−)2) is called isometric or unitary if U ⊆ U−∗ or U = U−∗,

respectively 1. An isometric operator is said to be maximal isometric if

it has no isometric extension. Similarly, an operator (or relation) S in

the Hilbert space (H, (·,−)) is called symmetric or selfadjoint if

S ⊆ S∗ or S = S∗,

respectively, and a symmetric operator (or relation) is said to bemaximal

symmetric if it has no symmetric extension. For a symmetric operator

(or relation) S in the Hilbert space (H, (·,−)) the notation N̂λ(S
∗) is

used to denote its defect spaces:

N̂λ(S
∗) = {{fλ, λfλ} : fλ ∈ ker (S∗ − λ)}, λ ∈ C.

With this notation the first von Neumann formula holds:

S∗ = S +̇ N̂λ(S
∗) +̇ N̂λ̄(S

∗), λ ∈ C \ R, (2.7)

cf. (2.3). In fact, the direct sums in (2.7) are orthogonal for λ = ± i.

The defect numbers n+(S) and n−(S) for S are defined as

n+(S) = dim N̂λ̄(S
∗) and n−(S) = dim N̂λ(S

∗), λ ∈ C+.

1 For a relation U , the symbol U−∗ is a shorthand notation for (U∗)−1 = (U−1)∗.
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There exist connections between (maximal) symmetric or selfadjoint re-

lations, (maximal) isometric or unitary relations and (maximal) neutral

or hyper-maximal neutral subspaces. In Calkin’s paper the connection

between neutral subspaces of a Krĕın space and isometric operators, by

means of what are now called angular operators (see e.g. [Azizov and

Iokhvidov, 1989, Chapter 1: §8]), is used very frequently. Also the con-

nection between symmetric operators and neutral subspaces of Krĕın

spaces was used, see in particular [Calkin, 1939a, Theorem 2.7]. Since

this connection is also frequently used here, it is formulated below.

Proposition 2.3 Let (H, (·,−)) be a Hilbert space and let jH be the

fundamental symmetry in H2 as in Example 2.2. Then S is a (closed,

maximal) symmetric or selfadjoint operator (or relation) in (H, (·,−)) if

and only if grS is a (closed, maximal) neutral or hyper-maximal neutral

subspace of the Krĕın space (H2, (jH ·,−)), respectively. Moreover,

S∗ = (grS)[⊥],

where [⊥] stands for the orthogonal complement with respect to (jH ·,−).

Unitary operators and boundary triplets Let H be an operator

(or relation) from the Hilbert space (H1, (·,−)1) to the Hilbert space

(H2, (·,−)2) and let ji be a fundamental symmetry in (Hi, (·,−)i), i =

1, 2. Then the adjoint H [∗] of H as a mapping from the Krĕın space

(H1, (j1 ·,−)1) to the Krĕın space (H2, (j2 ·,−)2) is defined via

H [∗] = {{f, f ′} ∈ H2 × H1 : (j1f
′, g)1 = (j2f, g

′)2, {g, g′} ∈ H} .

This Krĕın space adjoint H [∗] of H and the Hilbert space adjoint H∗ of

H in (2.6) are connected by

H [∗] = j1H
∗j2. (2.8)

By means of the Krĕın space adjoint an operator (or relation) U from

the Krĕın space (H1, (j1 ·,−)1) to the Krĕın space (H2, (j2 ·,−)2) is called

an isometric or a unitary operator (or relation) if

U−1 ⊆ U [∗] or U−1 = U [∗], (2.9)

respectively. Different from the Hilbert space situation, there exist iso-

metric and unitary relations (with non-trivial kernels). Here, however,

only unitary operators are encountered. In this connection note that

combining the equalities kerH∗ = (ranH)⊥2 and mulH∗ = (domH)⊥1
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Calkin’s abstract boundary conditions 9

with (2.8) and (2.9) yields that for a unitary relation U between Krĕın

spaces the following equalities hold:

kerU = (domU)[⊥]1 and mulU = (ranU)[⊥]2 , (2.10)

where [⊥]i is the orthogonal complement with respect to (ji ·,−)i, for

i = 1, 2. In particular, a unitary operator has a dense range and a unitary

operator has a trivial kernel if and only if it is densely defined.

By the definitions in (2.9) a unitary operator is always closed, and an

operator and its inverse are simultaneously isometric or unitary. Clearly,

an operator U is isometric in the sense of (2.9) if and only if

(j1f, g)1 = (j2Uf, Ug)2, f, g ∈ domU. (2.11)

Furthermore, an isometric operator U is unitary if and only if for g ∈ K1

and g′ ∈ K2, (j1f, g)1 = (j2Uf, g′)2 for all f ∈ domU , implies that

g ∈ domU and g′ = Ug. In other words, unitary operators are a special

type of maximal isometric operators.

Equation (2.11) shows that isometric operators map neutral, non-

negative and nonpositive subspaces of (H1, (j1 ·,−)1) onto neutral,

nonnegative and nonpositive subspaces of (H2, (j2 ·,−)2), respectively.

In general, isometric or unitary operators do not map closed subspaces

onto closed subspaces or maximal semi-definite subspaces onto maximal

semi-definite subspaces. However, if a unitary operator has a closed

domain, or, equivalently, a closed range, then it preserves all such

properties. In fact, unitary operators with closed domain, i.e. bounded

unitary operators, also preserve the defect numbers of neutral subspaces,

cf. Theorem 2.20 below.

Next the general definition of a unitary boundary triplet is recalled,

cf. [Derkach et al., 2006, Definition 3.1], and its connection to unitary

operators between Krĕın spaces is explained.

Definition 2.4 Let S be a closed symmetric relation in a Hilbert space

(H, (·,−)H) and let (H, (·,−)H) be an auxiliary Hilbert space. Then the

triplet {H,Γ0,Γ1}, where Γi : S∗ ⊆ H2 → H is a linear operator for

i = 0, 1, is called a unitary boundary triplet for S∗, if

(i) domΓ = S∗ and ranΓ = H2, where Γ = Γ0 × Γ1;

(ii) Green’s identity holds: for every {f, f ′}, {g, g′} ∈ domΓ,

(f ′, g)H−(f, g′)H = (Γ1{f, f
′},Γ0{g, g

′})H−(Γ0{f, f
′},Γ1{g, g

′})H;
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10 S. Hassi and H.L. Wietsma

(iii) if g, g′ ∈ H and k, k′ ∈ H are such that for all {f, f ′} ∈ domΓ

(f ′, g)H − (f, g′)H = (Γ1{f, f
′}, k)H − (Γ0{f, f

′}, k′)H,

then {g, g′} ∈ domΓ and {k, k′} = Γ{g, g′}.

If S is a densely defined operator, so that its adjoint S∗ is also an

operator, then {f, f ′} and {g, g′} appearing in Definition 2.4 can be

replaced by f and g, respectively. Green’s identity in that case becomes:

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H,

cf. (2.1). Note that, with the notation as in (2.2), Definition 2.4 means

that Γ is a unitary operator from (H2, (jH ·,−)) to (H2, (jH ·,−)). This,

in particular, implies that ker Γ = S, cf. (2.10) and Proposition 2.3.

Remark 2.5 If S is a symmetric operator and there exists a unitary

boundary triplet for S∗, then n±(S) = dimH∓, where H+ +H− is the

canonical decomposition of H2 induced by jH. Since it is easy to see

that dimH+ = dimH−, unitary boundary triplets only exist for the

adjoints of symmetric relations with equal defect numbers. For symmet-

ric relations with unequal defect numbers either D-boundary triplets or

boundary relations have to be used, see [Mogilevskĭı, 2006] or [Derkach

et al., 2006, Proposition 3.7], respectively.

2.3 Reduction operators

In the first subsection the basic properties of reduction operators are

given and it is shown how reduction operators can be interpreted as

unitary operators and/or unitary boundary triplets. In the second sub-

section a graph decomposition of reduction operators is presented which

will be the central tool in Section 2.4. In the third subsection a classifica-

tion of reduction operators is introduced and characterized. In the fourth

and final subsection bounded reduction operators are shortly considered.

Reduction operators, unitary operators and boundary triplets

Let U be a reduction operator for S∗ as in Definition 2.1, then as a direct

consequence of its definition U has the following three basic properties:

(i) kerU = S and, hence, S is a symmetric operator in (H, (·,−));

(ii) ranU = K;

(iii) I +W 2 = 0,

www.cambridge.org/9781107606111
www.cambridge.org

