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The State of the Art in Smale’s 7th Problem
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Depto. de Matemáticas, Estad́ıstica y Computación
Universidad de Cantabria

1.1 A very brief historical note

Smale’s 7th problem is the computational version of an old problem

dating back to Thomson [30] and Tammes [29], see Whyte’s early review

[32] for its history, namely, the sensible distribution of points in the two–

dimensional sphere. In Whyte’s paper different possible definitions of

“well–distributed points in the sphere” are suggested:

1. Points which maximise the product of their mutual distances (called

elliptic Fekete points 1 after [14]).

2. Points which minimise the sum of the inverse of their mutual distances

(Thomson’s problem), and more generally which minimise some sum

of potentials which depend on the mutual distances (like Riesz po-

tentials).

3. Points which maximise the least distance between any pair.

4. Points which are the center of the optimal packing problem, that is,

the problem of finding the smallest radius of a sphere such that one

can place on its surface k non–overlapping circles of a given radius.

This beautiful problem is terribly challenging! A first shocking result by

Leech [19] showed that even though the set of N particles on the sphere

which are critical points for the problem in item (2) for every possible

potential can be completely described, this description is not enough to

solve the problem for any particular potential. Namely, solving problem

(2) for some particular potential may be completely meaningless for

solving problem (2) for another, different potential. We quote Leech:

a Partially supported by MTM2010-16051 (Spanish Ministry of Science and
Innovation MICINN).

1 Not to be confused with the so called Fekete points.
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2 Beltrán

There is no obvious way of relating the present problems to other extremal

problems such as minimising the greatest distance at which an arbitrary point

can be placed from the nearest point of a configuration. In fact, since a con-

figuration which is not balanced is out of equilibrium under almost all laws of

force, it is not to be expected that any such configuration will be found to be

of significance in respect to both an equilibrium problem and another extremal

problem, or even under two different significant equilibrium problems.

The problem has so many ramifications that it is difficult even to men-

tion all of them. There are dozens of papers written about each of the

mentioned problems. In this paper we focus only on the explicit version

proposed by Smale [27]: the problem of finding elliptic Fekete points

in the two–dimensional sphere. Our reference list will also refer only to

this problem, and thus many important articles dealing with the other

versions are omitted, for the sake of brevity.

1.2 The problem

Given N different points x1, . . . , xN ∈ R3, let X = (x1, . . . , xN ) and

E(X) = E(x1, . . . , xN ) = −
∑

i<j

log ‖xi − xj‖

be its logarithmic potential or logarithmic energy 2. Let

S = {(a, b, c) ∈ R
3 : a2 + b2 + (c− 1/2)2 = 1/4}

= {(a, b, c) ∈ R
3 : a2 + b2 + c2 = c}

be the Riemann sphere, i.e. the sphere in R3 of radius 1/2 centered at

(0, 0, 1/2)T , and let

mN = min
x1,...,xN∈S

E(x1, . . . , xN )

be the minimum value of E . A minimising N–tuple X = (x1, . . . , xN ) is

called a set of elliptic Fekete points. Note that such a N–tuple can also

be defined as a set of N points in the sphere which maximise the product

of their mutual distances.

Smale’s 7th problem [27]: Can one find X = (x1, . . . , xN ) such

that

E(X)−mN ≤ c logN, c a universal constant. (1.1)

2 Sometimes E(X) is denoted by E0(X), E(0, X) or VN (X)
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1: Smale’s 7th Problem 3

By “can one find” Smale means “can one describe an algorithm (in

the BSS model of computation3) which on input N produces such a

N–tuple, in running time bounded by a polynomial in N?”.

Remark 1.1 The original question in [27] is not for points in S but

for points in the unit sphere {(a, b, c) ∈ R
3 : a2+ b2+ c2 = 1}. We prefer

to use the Riemann sphere instead of the unit sphere because some of

the results look more natural when stated in S. Another powerful reason

to do so is that − log ‖x − y‖ is positive for every x, y ∈ S while the

same claim is not true for x, y in the unit sphere. This helps intuition at

some moments. Of course, the problems of finding a set of elliptic Fekete

points in S or in the unit sphere are equivalent via the transformation

(a, b, c) ∈ S �→ (2a, 2b, 2c− 1).

If x1, . . . , xN ∈ S and we denote x̂1, . . . , x̂N their associated unit sphere

points via this transform, then we have:

E(x̂1, . . . , x̂N ) = E(x1, . . . , xN )− log 2

2
N(N − 1)

We thus state all the results for S, translating them from their original

citations when necessary.

1.3 The value of mN

The first problem one encounters in dealing with Smale’s 7th problem is

that the value of mN is not known, even to O(N). A general technique

(valid for Riemannian manifolds) given by Elkies shows that

mN ≥ N2

4
− N logN

4
+O(N).

Wagner [31] used the stereographic projection and Hadamard’s inequal-

ity to get another lower bound. His method was refined by Rakhmanov,

Saff and Zhou [21], who also proved an upper bound for mN using par-

titions of the sphere. The lower bound was subsequently improved upon

3 For the nonexpert reader, a BSS algorithm is just an algorithm in the natural
sense of the word: a sequence of instructions (arithmetic operations, comparisons
and, in general, any of the usual instructions present in a computer program)
that, correctly executed, gives an answer. The arithmetic operations are assumed
to be exact when performed on real numbers. See [9, 8] for details.
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by Dubickas and Brauchart [13], [10]. The following result summarizes

the best known bounds:

Theorem 1.2 Let CN be defined by

mN =
N2

4
− N logN

4
+ CNN.

Then,

−0.4375 ≤ lim inf
N �→∞

CN ≤ lim sup
N �→∞

CN ≤ −0.3700708...

1.4 The separation distance

The separation distance of a N–tuple X = (x1, . . . , xN ) ∈ SN is defined

by

d‖·‖,sep(X) = min
i�=j

‖xi − xj‖.

By the definition of E , it is clear that if X is a set of elliptic Fekete points

then d‖·‖,sep(X) cannot be too small. Using tools from classical potential

theory, Rakhmanov, Saff and Zhou [22, 21] first proved the lower bound

3/(10
√
N) for the separation distance of a set of elliptic Fekete points.

Their result was improved by Dubickas [13] to 7/(8
√
N). The sharpest

known bound is due to Dragnev [11]:

Theorem 1.3 Let X be a set of elliptic Fekete points. Then,

d‖·‖,sep(X) ≥ 1√
N − 1

.

Recall that given two points x, y ∈ S, the Riemannian distance dR(x, y)

is the length of the shortest curve in S joining x and y. Elementary

trigonometry shows that

dR(x, y) = arcsin ‖x− y‖.

Thus, if we define

dR,sep(X) = min
i�=j

dR(xi, xj),

we have

dR,sep(X) ≥ arcsin
1√

N − 1
≥ 1√

N − 1
,

for X as above.
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1: Smale’s 7th Problem 5

1.5 The condition number of polynomials and

Bombieri–Weyl norm

According to [27], one of Smale’s motivations for studying the problem

of elliptic Fekete points was to find polynomials all of whose zeros are

well conditioned. Shub and Smale [24] defined a certain quantity (the

“condition number”) and used it to measure the stability and complexity

of polynomial zero finding algorithms. Given a homogeneous polynomial

h(z, t) =
N
∑

k=0

akz
ktN−k, ak ∈ C, aN 	= 0

of degree N ≥ 1, and a projective zero ζ ∈ IP(C2) of h, the condition

number of h at ζ is4

μ(h, ζ) = N1/2‖(Dh(ζ) |ζ⊥)−1‖‖h‖‖ζ‖N−1,

or +∞ if Dh(ζ) |ζ⊥ is not an invertible mapping. Here, Dh(ζ) |ζ⊥ is the

restriction of the derivative to the orthogonal complement of ζ in C2,

and

‖h‖ =

(

N
∑

k=0

(

N

k

)−1

|ak|2
)1/2

is the Bombieri–Weyl norm (sometimes called the Kostlan norm) of h.

If no zero of h is specified, we just take the maximum:

μ(h) = max
ζ∈IP(C2):h(ζ)=0

μ(h, ζ).

Now, let f be a univariate polynomial

f(X) =

N
∑

k=0

akX
k, ak ∈ C, aN 	= 0,

and let z ∈ C be a zero of f . We define

μ(f, z) = μ(h, (z, 1)), μ(f) = max
z∈C:f(z)=0

μ(f, z),

where h(X,Y ) =
∑N

k=0 akX
kY N−k is the homogeneous counterpart of

f . Taking ‖f‖ = ‖h‖, one can write:

μ(f, z) =
N1/2(1 + |z|2)N−2

2

|f ′(z)| ‖f‖.

4 Sometimes µ is denoted µnorm or µproj but we here keep the simpler notation.
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In [26] Shub and Smale proved the following relation between the condi-

tion number and elliptic Fekete points. Let Re and Im be, respectively,

the real and complex part of a complex number.

Theorem 1.4 Let z1, . . . , zN ∈ C be a set of complex numbers. For

1 ≤ i ≤ N , let xi ∈ S be the preimage of zi under the stereographic

projection, that is

xi =

(

Re(zi)

1 + |zi|2
,
Im(zi)

1 + |zi|2
,

1

1 + |zi|2
)T

∈ S, 1 ≤ i ≤ N. (1.2)

Assume that x1, . . . , xN are a set of elliptic Fekete points. Let f : C → C

be a degree N polynomial such that its zeros are z1, . . . , zN . Then,

μ(f) ≤
√

N(N + 1).

More generally, let z1, . . . , zN ∈ C be any collection of N distinct complex

numbers, let f be a polynomial with zeros z1, . . . , zN and let x1, . . . , xN

be given by (1.2). Then,

μ(f) ≤
√

N(N + 1)
eE(x1,...,xN )

emN

.

It is interesting to remark that there exists no explicit known way of

describing a sequence of polynomials satisfying μ(f) ≤ N c, for any fixed

constant c and N ≥ 1. Theorem 1.4 says that, if a N–tuple satisfying

(1.1) can be described for any N , then such a sequence of polynomials

can also be generated.

Here is a nice formula (which just follows from the definitions) relating

E to μ and Bombieri–Weyl norm:

E(x1, . . . , xN ) =
1

2

N
∑

i=1

logμ(f, zi) +
N

2
log

∏N
i=1

√

1 + |zi|2
‖f‖ − N

4
logN.

Note that the term
∏N

i=1

√

1 + |zi|2
‖f‖ (1.3)

in the previous formula is the quotient between the product of the

Bombieri–Weyl norm of the factors of f and the Bombieri–Weyl norm

of f . That quantity is always greater than 1, see [3]. Experiments sug-

gest that minimising E is a problem similar to minimising the sum of

logμ(f, zi), and to maximising the quotient (1.3)5. We recall from [3,

5 This may seem surprising at a first glance. It turns out that (1.3) is minimal, i.e.,
equal to 1, precisely when all the zi are equal, which implies E(x1, . . . , xN ) = ∞.
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1: Smale’s 7th Problem 7

Theorem 2.1] (see also [4]) that for two polynomials f, g of respective

degrees r and s,

‖f · g‖ ≥
√

r!s!

(r + s)!
‖f‖ · ‖g‖, (1.4)

and this bound is optimal. Maximising (1.3) would be solved by finding

an analogue of (1.4) for products of N polynomials, a nice mathematical

problem in its own right. As pointed out in [4], it follows from (1.4) that
∏N

i=1

√

1 + |zi|2
‖f‖ ≤

√
N !,

but this inequality is far from optimal (for example, if the z′is are the

Nth roots of unity, then the value of this quotient is
√
2N−1 ≪

√
N !).

1.6 The average value and random polynomials

Random polynomials6 have been known, since [25], to be well–condition-

ed on average, meaning that their condition number is polynomially

bounded by their degree, on average. This, combined with Theorem 1.4,

suggests that spherical points associated with zeros of random polyno-

mials should produce small values of E . To properly state this fact, let

us consider E as a function defined on S
N \ Σ where

Σ = {(x1, . . . , xN ) ∈ S
N : xi = xj for some i 	= j}.

Note that Σ is the set of N–tuples (x1, . . . , xN ) of points in S such

that the polynomial f whose zeros are associated with the xi satisfies

μ(f) = ∞.

Here and throughout this paper, for a measure space X , a measurable,

finite volume subset U ⊆ X , and a measurable function f : U→[0,∞)

we set

−
∫

U

f =

∫

U
f

∫

U
1
=

1

Volume(U)

∫

U

f.

One can easily compute the average value of E when x1, . . . , xN are

chosen at random in S, uniformly and independently with respect to the

probability distribution induced by Lebesgue measure in S:

−
∫

x∈SN\Σ

E(X) =
N2

4
− N

4
.

6 in the sense of Theorem 1.5 below.
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By comparing this with Theorem 1.2, we can see that random choices

of points in the sphere already produce pretty low values of the minimal

energy. One can ask if other (simple) probability distributions produce

even lower average results. In [2] we proved a relation with random

polynomials.

Theorem 1.5 Let f(X) =
∑N

k=0 akX
k be a random polynomial where

the ak are independent complex random variables, such that the real and

imaginary parts of ak are independent (real) Gaussian random variables

centered at 0 with variance
(

N
k

)

. Let z1, . . . , zN be the complex zeros of

f , and let xi be given by (1.2). Then, the expected value of E(x1, . . . , xN )

equals

N2

4
− N logN

4
− N

4
.

Again, by comparing this with Theorem 1.2, we conclude that spher-

ical points coming from zeros of random polynomials are pretty well

distributed, as they agree with the minimal value of E , to order O(N).

This result fits into a more general (yet, less precise) kind of result re-

lated to random sections on Riemann surfaces, see [33, 34]. Note that the

notion of “random polynomial” used in Theorem 1.5 is strongly related

to the Bombieri–Weyl norm. It is the natural Gaussian distribution as-

sociated with the space of polynomials, considered as a normed vector

space with the Bombieri–Weyl norm.

1.7 Properties of the critical points of E
One of the first things to do when faced with an optimization problem

is to study the critical points of the objective function, i.e. the points

where the derivative vanishes. In our case the derivative of E is easy to

compute. Algebraic manipulation of its expression was used in [7, 12] to

get the following 7:

Theorem 1.6 Let x1, . . . , xN ∈ S be a critical point of E. Let

o =

(

0, 0,
1

2

)T

be the center of S. Then,

7 In [12] the result is stated for global minima, but the proof is indeed valid for
any critical point of E. Moreover, the third item in this theorem is here stated in
greater generality than in [12], but the same proof holds.
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1: Smale’s 7th Problem 9

• The center of mass of the xi is o. Namely,

N
∑

i=1

−→
oxi = o, or equivalently

1

N

N
∑

i=1

xi = o.

• For every 1 ≤ i ≤ N , we have:

∑

j �=i

−−→xjxi

‖xj − xi‖2
= 2(N − 1)−→oxi.

• For every x ∈ S, we have:

N
∑

i=1

‖x− xi‖2 =
N

2
.

Other natural questions are, which types of critical points does E
have and how many of them exist? There are some conjectures about

their number (some authors conjecture that the number of local minima

grows exponentially on N , see the references in Section 1.12 below) but

no precise result is known. It was pointed out in [26] that there exist

critical points of E of index N , namely N points evenly distributed on

some equator of S. It follows from (1.5) below and the maximum principle

of harmonic analysis that no local maximum of E can exist.

1.8 Harmonic properties of E
Let us endow SN with its natural Riemannian structure, that is the

product structure (or equivalently, the structure inherited from R3N ).

Again viewing E as a function E : SN \ Σ→R, we computed in [5] its

(Riemannian) Laplacian. It turns out that

∆E ≡ 2N(N − 1), (1.5)

is a constant. If a function defined on an open set of Rn has a constant

Laplacian, then the classical mean value theorem of harmonic analysis

gives a formula for the mean value of the function on a ball centered

at every point. In the case of SN , one can use the theory of harmonic

manifolds to analyze the mean value of E in products of spherical caps,

that is in sets of the form

B∞(X,�ε) = {(y1, . . . , yN ) ∈ SN : dR(xi, yi) < εi, 1 ≤ i ≤ N}
= B(x1, ε1)× · · · ×B(xN , εN) ⊆ SN ,
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where X = (x1, . . . , xN ), �ε = (ε1, . . . , εN ) and for x ∈ S, ε > 0, B(x, ε)

is the open spherical cap of (Riemannian) radius equal to ε. Abusing

notation, if ε = 0 we define B(x, 0) = {x}. The mean value of E in

B∞(X,�ε) was studied in [5]:

Theorem 1.7 Let X ∈ S
N \Σ and �ε ∈ [0, π/2)N be such that B∞(X,�ε)

⊆ SN \ Σ. Then,

−
∫

B∞(X,�ε)

E(Y ) dY = E(X) + CN (�ε),

where

CN (�ε) = (N − 1)

N
∑

j=1

(

1

2
+

log(cos εj)

tan2 εj

)

∈
[

0,
N − 1

2

)

,

with the convention that

1

2
+

log(cos 0)

tan2 0
= 0.

The reader may find useful the estimate 1
2 + log(cos ε)

tan2 ε ≈ ε2

4 for small

values of ε.

1.9 The limiting distribution

It follows from classical potential theory that optimal logarithmic energy

points are uniformly distributed over S, asymptotically as N �→ ∞, in

the following sense: Let {X(N) = (x
(N)
1 , . . . , x

(N)
N )} be a sequence such

that X(N) ∈ S
N is a set of N elliptic Fekete points in S for every N ≥ 2.

Then, for any continuous function f : S→R we have:

−
∫

S

f = lim
N �→∞

1

N

N
∑

j=1

f(x
(N)
j ). (1.6)

One way to analyze this qualitative result is to study the so called spher-

ical cap discrepancy, that is for fixed N ≥ 2:

DC(X
(N)) = sup

C

∣

∣

∣

∣

♯(X(N) ∩ C)
N

−−
∫

S

χC

∣

∣

∣

∣

,

where χC is the characteristic function of C and the supremum is taken

over all possible spherical caps C in S. Note thatDC(X
(N)) measures how

far the counting measure is from the probability measure associated with

Lebesgue measure in S. In [10], Brauchart proved the following estimate:
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