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BASIC PROBABILITY
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1

Discrete outcomes

1.1 A uniform distribution

Lest men suspect your tale untrue,
Keep probability in view.

J. Gay (1685–1732), English poet.

In this section we use the simplest (and historically the earliest) probabilis-
tic model where there are a finite number m of possibilities (often called
outcomes) and each of them has the same probability 1/m. A collection A

of k outcomes with k ≤ m is called an event and its probability P(A) is
calculated as k/m:

P(A) =
the number of outcomes in A
the total number of outcomes

. (1.1.1)

An empty collection has probability zero and the whole collection one. This
scheme looks deceptively simple: in reality, calculating the number of out-
comes in a given event (or indeed, the total number of outcomes) may be
tricky.

Worked Example 1.1.1 You and I play a coin-tossing game: if the coin
falls heads I score one, if tails you score one. In the beginning, the score is
zero. (i) What is the probability that after 2n throws our scores are equal?
(ii) What is the probability that after 2n+ 1 throws my score is three more
than yours?

Solution The outcomes in (i) are all sequences

HHH . . .H, THH . . .H, . . . , TTT . . . T
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4 Discrete outcomes

formed by 2n subsequent letters H or T (or, 0 and 1). The total number
of outcomes is m = 22n, each carries probability 1/22n. We are looking for
outcomes where the number of Hs equals that of T s. The number k of such
outcomes is (2n)!/n!n! (the number of ways to choose positions for n Hs
among 2n places available in the sequence). The probability in question is
(2n)!
n!n!

× 1
22n

.

In (ii), the outcomes are the sequences of length 2n + 1, 22n+1 in total.
The probability equals

(2n+ 1)!
(n+ 2)!(n− 1)!

× 1
22n+1

.

Worked Example 1.1.2 A tennis tournament is organised for 2n players
on a knock-out basis, with n rounds, the last round being the final. Two
players are chosen at random. Calculate the probability that they meet:
(i) in the first or second round, (ii) in the final or semi-final, and (iii) the
probability they do not meet.

Solution The sentence ‘Two players are chosen at random’ is crucial. For
instance, one may think that the choice has been made after the tournament
when all results are known. Then there are 2n−1 pairs of players meeting in
the first round, 2n−2 in the second round, two in the semi-final, one in the
final and 2n−1 + 2n−2 + · · ·+ 2 + 1 = 2n − 1 in all rounds.

The total number of player pairs is
(

2n

2

)
= 2n−1(2n − 1). Hence the

answers:

(i)
2n−1 + 2n−2

2n−1(2n − 1)
=

3
2(2n − 1)

, (ii)
3

2n−1(2n − 1)
,

and

(iii)
2n−1(2n − 1)− (2n − 1)

2n−1(2n − 1)
= 1− 1

2n−1
.

Worked Example 1.1.3 There are n people gathered in a room.

(i) What is the probability that two (at least) have the same birthday?
Calculate the probability for n = 22 and 23.

(ii) What is the probability that at least one has the same birthday as you?
What value of n makes it close to 1/2?
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1.1 A uniform distribution 5

Solution The total number of outcomes is 365n. In (i), the number of out-
comes not in the event is 365× 364× · · ·× (365−n+1). So, the probability
that all birthdays are distinct is

(
365× 364× · · · × (365− n+ 1)

)/
365n and

that two or more people have the same birthday

1− 365× 364× · · · × (365− n+ 1)
365n

.

For n = 22:

1− 365
365

× 364
365

× · · · × 344
365

= 0.4927,

and for n = 23:

1− 365
365

× 364
365

× · · · × 343
365

= 0.5243.

In (ii), the number of outcomes not in the event is 364n and the probability
in question 1− (364/365)n. We want it to be near 1/2, so(

364
365

)n

≈ 1
2
, i.e. n ≈ − 1

log2(364/365)
≈ 252.61.

Worked Example 1.1.4 Mary tosses n+1 coins and John tosses n coins.
What is the probability that Mary gets more heads than John?

Solution We must assume that all coins are unbiased (as it was not spec-
ified otherwise). Mary has 2n+1 outcomes (all possible sequences of heads
and tails) and John 2n; jointly 22n+1 outcomes that are equally likely. Let
HM and TM be the number of Mary’s heads and tails and HJ and TJ

John’s, then HM + TM = n + 1 and HJ + TJ = n. The events {HM > HJ}
and {TM > TJ} have the same number of outcomes, thus P(HM > HJ) =
P(TM > TJ).

On the other hand, HM > HJ if and only if n − HM < n − HJ, i.e.
TM − 1 < TJ or TM ≤ TJ. So event HM > HJ is the same as TM ≤ TJ, and
P(TM ≤ TJ) = P(HM > HJ).

But for any (joint) outcome, either TM > TJ or TM ≤ TJ, i.e. the number
of outcomes in {TM > TJ} equals 22n+1 minus that in {TM ≤ TJ}. Therefore,
P(TM > TJ) = 1− P(TM ≤ TJ). To summarise:

P(HM > HJ) = P(TM > TJ) = 1− P(TM ≤ TJ) = 1− P(HM > HJ),

whence P(HM > HJ) = 1/2.

Solution Suppose that the final toss belongs to Mary. Let x be the prob-
ability that Mary’s number of heads equals John’s number of heads just
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6 Discrete outcomes

before the final toss. By the symmetry, the probability that Mary’s number
of heads exceeds that of John just before the final toss is (1 − x)/2. This
implies that the Mary’s number of heads exceeds that of John by the end of
the game equals (1− x)/2 + x/2 = 1/2.

Solution By the end of the game Mary has either more heads or more tails
than John because she has more tosses. These two cases exclude each other.
Hence, the probability of each case is 1/2 by the symmetry argument.

Worked Example 1.1.5 You throw 6n six-sided dice at random. Show
that the probability that each number appears exactly n times is

(6n)!
(n!)6

(
1
6

)6n

.

Solution There are 66n outcomes in total (six for each die), each has prob-
ability 1/66n. We want n dice to show one dot, n two, and so forth. The
number of such outcomes is counted by fixing first which dice show one:
(6n)!

/
[n!(5n)!]. Given n dice showing one, we fix which remaining dice show

two: (5n)!
/
[n!(4n)!], etc. The total number of desired outcomes is the prod-

uct that equals (6n)!(n!)6. This gives the answer.

In many problems, it is crucial to be able to spot recursive equations
relating the cardinality of various events. For example, for the number fn
of ways of tossing a coin n times so that successive tails never appear:
fn = fn−1 + fn−2, n ≥ 3 (a Fibonacci equation).

Worked Example 1.1.6 (i) Determine the number gn of ways of tossing
a coin n times so that the combination HT never appears. (ii) Show that
fn = fn−1 + fn−2 + fn−3, n ≥ 3, is the equation for the number of ways of
tossing a coin n times so that three successive heads never appear.

Solution (i) gn = 1 + n; 1 for the sequence HH . . .H, n for the sequences
T . . . TH . . .H (which includes T . . . T ).

(ii) The outcomes are 2n sequences (y1, . . . , yn) of H and T . Let An be
the event {no three successive heads appeared after n tosses}, then fn is
the cardinality #An. Split: An = B

(1)
n ∪B(2)

n ∪B(3)
n , where B(1)

n is the event
{no three successive heads appeared after n tosses, and the last toss was a
tail}, B(2)

n = {no three successive heads appeared after n tosses, and the last
two tosses were TH} and B

(3)
n ={no three successive heads appeared after

n tosses, and the last three tosses were THH}.
Clearly, B(i)

n ∩B(j)
n = ∅, 1 ≤ i �= j ≤ 3, and so fn = #B(1)

n +#B(2)
n +#B(3)

n .
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1.1 A uniform distribution 7

Now drop the last digit yn: (y1, . . . yn) ∈ B
(1)
n if and only if yn = T ,

(y1, . . . yn−1) ∈ An−1, i.e. #B(1)
n = fn−1. Also, (y1, . . . yn) ∈ B(2)

n if and only
if yn−1 = T , yn = H, and (y1, . . . yn−2) ∈ An−2. This allows us to drop
the two last digits, yielding #B(2)

n = fn−2. Similarly, #B(3)
n = fn−3. The

equation then follows.

Worked Example 1.1.7 In a Cambridge cinema n people sit at random
in the first row. The row has N ≥ n seats. Find the probability of the
following events:

(a) that no two people sit next to each other;
(b) that each person has exactly one neighbour; and
(c) that, for every pair of distinct seats symmetric relative to the middle of

the row, at least one seat from the pair is vacant.

Now assume that n people sit at random in the two first rows of the same
cinema, with 2N ≥ n. Find the probability of the following events:

(d) that at least in one row no two people sit next to each other;
(e) that in the first row no two people sit next to each other and in the

second row each person has exactly one neighbour; and
(f) that, for every pair of distinct seats in the second row, symmetric relative

to the middle of the row, at least one seat from the pair is vacant.

In parts (d)–(f) you may find it helpful to use indicator functions specifying
limits of summation.

Solution We assume that n ≥ 1. In parts (a)–(c), the total number of
outcomes equals

(
N
n

)
, and all of them have the same probability. (All people

are indistinguishable.) Then:
(a) The answer is

(
N−n+1

n

)/ (
N
n

)
if N ≥ 2n − 1 and 0 if N < 2n − 1. In

fact, to place n people in N seats so that no two of them sit next to each
other, we scan the row from left to right (say) and affiliate, with each of
n seats taken, an empty seat positioned to the right. Place an extra empty
seat to the right of the person in the position to the right end of the row.
This leaves N−n+1 virtual positions where we should place n objects. The
objects are empty seats to the right of occupied ones.

(b) First, assume n = 2l is even. Then we have n/2 = l pairs of neigh-
bouring occupied seats, and with each of n/2 of them we again affiliate an
empty seat to the right. Thus the answer is

(
N−n+1

n/2

)/ (
N
n

)
if N ≥ 3n/2− 1

and 0 if N < 3n/2− 1.
If n is odd, the probability in question equals 0.
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8 Discrete outcomes

(c) First, assume that N is even. Then, if we require that all people sit in
the left-hand side of the row, the number of outcomes is

(
N/2
n

)
. Now, for each

person we have 2 symmetric choices. Hence, the answer is 2n
(
N/2
n

)/ (
N
n

)
if

N ≥ 2n and 0 if N < 2n.
When N is odd, there is a seat in the middle: it can be taken or vacant.

Thus, the answer in this case is:[
2n
(
(N−1)/2

n

)
+ 2n−1

(
(N−1)/2

n−1

)]/ (
N
n

)
if N ≥ 2n+ 1,

2n−1
(
(N−1)/2

n−1

)/ (
N
n

)
if N = 2n− 1,

0 if N < 2n− 1.

In parts (d)–(f), we have in total(
2N
n

)
=
∑

0≤k≤n

1(n−N ≤ k ≤ N)
(
N

k

)(
N

n− k
)

outcomes, again of equal probability.
(d) The answer is therefore∑
0≤k≤n

[
2
(
N−k+1

k

)(
N

n−k

)
1(n−N ≤ k ≤ (N + 1)/2)

− (N−k+1
k

)(
N−n+k+1

n−k

)
1(n− (N + 1)/2 ≤ k ≤ (N + 1)/2)

]/(
2N
n

)
.

(e) The answer is∑
0≤l≤n/2

(
N−2l+1

l

)(
N−n+2l+1

n−2l

)
×1(n/2− (N + 1)/4 ≤ l ≤ (N + 1)/3)

/(
2N
n

)
.

(f) For N even, the answer is∑
0≤k≤n

2k
(
N/2
k

)(
N

n− k
)
1(n−N ≤ k ≤ N/2)

/(
2N
n

)
.

For N odd, the answer is∑
0≤k≤n

[
1(k ≤ (N − 1)/2)2k

(
(N − 1)/2

k

)

+1(k ≤ (N + 1)/2)2k−1

(
(N − 1)/2
k − 1

)]
×
(

N

n− k
)
1(n−N ≤ k)

/(
2N
n

)
.
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1.2 Conditional probabilities 9

1.2 Conditional Probabilities. Bayes’ Theorem.
Independent trials

Probability theory is nothing but common sense reduced to calculation.
P.-S. Laplace (1749–1827), French mathematician.

Clockwork Omega
(From the series ‘Movies that never made it to the Big Screen’.)

From now on we adopt a more general setting: our outcomes do not neces-
sarily have equal probabilities p1, . . . , pm, with pi > 0 and p1 + · · ·+pm = 1.

As before, an event A is a collection of outcomes (possibly empty); the
probability P(A) of event A is now given by

P(A) =
∑

outcome i∈A
pi =

∑
outcome i

piI(i ∈ A). (1.2.1)

(P(A) = 0 for A = ∅.) Here and below, I stands for the indicator function,
viz.:

I(i ∈ A) =
{

1, if i ∈ A,
0, otherwise.

The probability of the total set of outcomes is 1. The total set of outcomes
is also called the whole, or full, event and is often denoted by Ω, so P(Ω) = 1.
An outcome is often denoted by ω, and if p(ω) is its probability, then

P(A) =
∑
ω∈A

p(ω) =
∑
ω∈Ω

p(ω)I(ω ∈ A). (1.2.2)

As follows from this definition, the probability of the union

P(A1 ∪A2) = P(A1) + P(A2) (1.2.3)

for any pair of disjoint events A1, A2 (with A1 ∩A2 = ∅). More generally,

P(A1 ∪ · · · ∪An) = P(A1) + · · ·+ P(An) (1.2.4)

for any collection of pair-wise disjoint events (with Aj ∩ Aj′ = ∅ for all
j �= j′). Consequently, (i) the probability P(Ac) of the complement Ac = Ω\A
is 1 − P(A), (ii) if B ⊆ A, then P(B) ≤ P(A) and P(A) − P(B) = P(A\B)
and (iii) for a general pair of events A,B: P(A\B) = P

(
A\ (A ∩ B)

)
=

P(A)− P(A ∩B).
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10 Discrete outcomes

Furthermore, for a general (not necessarily disjoint) union:

P(A1 ∪ · · · ∪An) ≤
n∑

i=1

P(Ai);

a more detailed analysis of the probability P(
⋃
Ai) is provided by the

exclusion–inclusion formula (1.3.1); as follows.
Given two events A and B with P(B) > 0, the conditional probability

P(A|B) of A given B is defined as the ratio

P(A|B) =
P(A ∩B)

P(B)
. (1.2.5)

At this stage, the conditional probabilities are important for us because of
two formulas. One is the formula of complete probability: if B1, . . . , Bn are
pair-wise disjoint events partitioning the whole event Ω, i.e. have Bi∩Bj = ∅
for 1 ≤ i < j ≤ n and B1

⋃
B2
⋃ · · ·⋃Bn = Ω, and in addition P(Bi) > 0

for 1 ≤ i ≤ n, then

P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + · · ·+ P(A|Bn)P(Bn). (1.2.6)

The proof is straightforward:

P(A) =
∑

1≤i≤n

P(A ∩Bi) =
∑

1≤i≤n

P(A ∩Bi)
P(Bi)

P(Bi) =
∑

1≤i≤n

P(A|Bi)P(Bi).

The point is that often it is conditional probabilities that are given, and
we are required to find unconditional ones; also, the formula of complete
probability is useful to clarify the nature of (unconditional) probability P(A).
Despite its simple character, this formula is an extremely powerful tool in
literally all areas dealing with probabilities. In particular, a large portion of
the theory of Markov chains is based on its skilful application.

Representing P(A) in the form of the right-hand side (RHS) of (1.2.6) is
called conditioning (on the collection of events B1, . . . , Bn).

Another formula is the Bayes formula (or Bayes’ Theorem) named after
T. Bayes (1702–1761), an English mathematician and cleric. It states that
under the same assumptions as above, if in addition P(A) > 0, then the
conditional probability P(Bi|A) can be expressed in terms of probabilities
P(B1), . . . ,P(Bn) and conditional probabilities P(A|B1), . . . ,P(A|Bn) as

P(Bi|A) =
P(A|Bi)P(Bi)∑

1≤j≤n
P(A|Bj)P(Bj)

. (1.2.7)
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