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1

What Is Enumerative Combinatorics?

1.1 How to Count

The basic problem of enumerative combinatorics is that of counting the number
of elements of a finite set. Usually we are given an infinite collection of finite sets
Si where i ranges over some index set I (such as the nonnegative integers N), and
we wish to count the number f (i) of elements in each Si “simultaneously.” Imme-
diate philosophical difficulties arise. What does it mean to “count” the number of
elements of Si? There is no definitive answer to this question. Only through experi-
ence does one develop an idea of what is meant by a “determination” of a counting
function f (i). The counting function f (i) can be given in several standard ways:

1. The most satisfactory form of f (i) is a completely explicit closed formula
involving only well-known functions, and free from summation symbols. Only
in rare cases will such a formula exist. As formulas for f (i) become more com-
plicated, our willingness to accept them as “determinations” of f (i) decreases.
Consider the following examples.

1.1.1 Example. For each n ∈ N, let f (n) be the number of subsets of the set
[n] = {1,2, . . . ,n}. Then f (n) = 2n, and no one will quarrel about this being a
satisfactory formula for f (n).

1.1.2 Example. Suppose n men give their n hats to a hat-check person. Let f (n)
be the number of ways that the hats can be given back to the men, each man
receiving one hat, so that no man receives his own hat. For instance, f (1) = 0,
f (2)= 1, f (3)= 2. We will see in Chapter 2 (Example 2.2.1) that

f (n)= n!
n∑
i=0

(−1)i

i! . (1.1)

This formula for f (n) is not as elegant as the formula in Example 1.1.1, but for
lack of a simpler answer we are willing to accept (1.1) as a satisfactory formula.
It certainly has the virtue of making it easy (in a sense that can be made precise)
to compute the values f (n). Moreover, once the derivation of (1.1) is understood

1

http://www.cambridge.org/9781107602625
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-60262-5 - Enumerative Combinatorics, Volume 1: Second Edition
Richard P. Stanley
Excerpt
More information

2 What Is Enumerative Combinatorics?

(using the Principle of Inclusion–Exclusion), every term of (1.1) has an easily
understood combinatorial meaning. This enables us to “understand” (1.1) intu-
itively, so our willingness to accept it is enhanced. We also remark that it follows
easily from (1.1) that f (n) is the nearest integer to n!/e. This is certainly a simple
explicit formula, but it has the disadvantage of being “noncombinatorial”; that is,
dividing by e and rounding off to the nearest integer has no direct combinatorial
significance.

1.1.3 Example. Letf (n)be the number ofn×nmatrices M of 0’s and 1’s such that
every row and column of M has three 1’s. For example,f (0)= 1,f (1)=f (2)= 0,
f (3)= 1. The most explicit formula known at present for f (n) is

f (n)= 6−nn!2
∑ (−1)β(β+ 3γ )!2α 3β

α!β!γ !2 6γ
, (1.2)

where the sum ranges over all (n+ 2)(n+ 1)/2 solutions to α + β + γ = n in
nonnegative integers. This formula gives very little insight into the behavior of
f (n), but it does allow one to compute f (n) much faster than if only the com-
binatorial definition of f (n) were used. Hence with some reluctance we accept
(1.2) as a “determination” of f (n). Of course, if someone were later to prove that
f (n)= (n−1)(n−2)/2 (rather unlikely), then our enthusiasm for (1.2) would be
considerably diminished.

1.1.4 Example. There are actually formulas in the literature (“nameless here for
evermore”) for certain counting functions f (n) whose evaluation requires listing
all (or almost all) of thef (n)objects being counted! Such a “formula” is completely
worthless.

2. A recurrence for f (i) may be given in terms of previously calculated f (j)’s,
thereby giving a simple procedure for calculating f (i) for any desired i ∈ I .
For instance, let f (n) be the number of subsets of [n] that do not contain
two consecutive integers. For example, for n = 4 we have the subsets ∅, {1},
{2}, {3}, {4}, {1,3}, {1,4}, {2,4}, so f (4) = 8. It is easily seen that f (n) =
f (n− 1)+ f (n− 2) for n≥ 2. This makes it trivial, for example, to compute
f (20) = 17711. On the other hand, it can be shown (see Section 4.1 for the
underlying theory) that

f (n)= 1√
5

(
τn+2 − τ̄ n+2

)
,

where τ = 1
2 (1 +√

5), τ̄ = 1
2 (1 −√

5). This is an explicit answer, but because
it involves irrational numbers, it is a matter of opinion (which may depend on
the context) whether it is a better answer than the recurrence f (n) = f (n−
1)+f (n−2).
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1.1 How to Count 3

3. An algorithm may be given for computing f (i). This method of determining f
subsumes the previous two, as well as method 5, which follows. Any counting
function likely to arise in practice can be computed from an algorithm, so the
acceptability of this method will depend on the elegance and performance of
the algorithm. In general, we would like the time that it takes the algorithm
to compute f (i) to be “substantially less” than f (i) itself. Otherwise, we are
accomplishing little more than a brute force listing of the objects counted by
f (i). It would take us too far afield to discuss the profound contributions that
computer science has made to the problem of analyzing, constructing, and eval-
uating algorithms. We will be concerned almost exclusively with enumerative
problems that admit solutions that are more concrete than an algorithm.

4. An estimate may be given for f (i). If I = N, this estimate frequently takes the
form of an asymptotic formula f (n)∼ g(n), whereg(n) is a “familiar function.”
The notation f (n)∼ g(n)means that limn→∞ f (n)/g(n)= 1. For instance, let
f (n) be the function of Example 1.1.3. It can be shown that

f (n)∼ e−236−n(3n)!.
For many purposes this estimate is superior to the “explicit” formula (1.2).

5. The most useful but most difficult to understand method for evaluating f (i) is
to give its generating function. We will not develop in this chapter a rigorous
abstract theory of generating functions, but will instead content ourselves with
an informal discussion and some examples. Informally, a generating function
is an “object” that represents a counting function f (i). Usually this object is a
formal power series. The two most common types of generating functions are
ordinary generating functions and exponential generating functions. If I = N,
then the ordinary generating function of f (n) is the formal power series∑

n≥0

f (n)xn,

while the exponential generating function of f (n) is the formal power series∑
n≥0

f (n)
xn

n! .

(If I = P, the positive integers, then these sums begin at n= 1.) These power
series are called “formal” because we are not concerned with letting x take on
particular values, and we ignore questions of convergence and divergence. The
term xn or xn/n! merely marks the place where f (n) is written.

If F(x)=∑n≥0 anx
n, then we call an the coefficient of xn in F(x), and write

an = [xn]F(x).
Similarly, if F(x)=∑n≥0 anx

n/n!, then we write

an = n![xn]F(x).
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4 What Is Enumerative Combinatorics?

In the same way, we can deal with generating functions of several variables, such as∑
l≥0

∑
m≥0

∑
n≥0

f (l,m,n)
xlymzn

n!

(which may be considered as “ordinary” in the indices l,m and “exponential” in n),
or even of infinitely many variables. In this latter case every term should involve
only finitely many of the variables. A simple generating function in infinitely many
variables is x1 +x2 +x3 +·· · .

Why bother with generating functions if they are merely another way of writing
a counting function? The answer is that we can perform various natural operations
on generating functions that have a combinatorial significance. For instance, we
can add two generating functions, say in one variable with I = N, by the rule∑

n≥0

anx
n

+
∑
n≥0

bnx
n

=
∑
n≥0

(an+ bn)xn

or ∑
n≥0

an
xn

n!

+
∑
n≥0

bn
xn

n!

=
∑
n≥0

(an+ bn)x
n

n! .

Similarly, we can multiply generating functions according to the rule∑
n≥0

anx
n

∑
n≥0

bnx
n

=
∑
n≥0

cnx
n,

where cn =∑ni=0 aibn−i , or∑
n≥0

an
xn

n!

∑
n≥0

bn
xn

n!

=
∑
n≥0

dn
xn

n! ,

where dn =∑ni=0

(
n
i

)
aibn−i , with

(
n
i

)= n!/i!(n− i)!. Note that these operations
are just what we would obtain by treating generating functions as if they obeyed
the ordinary laws of algebra, such as xixj = xi+j . These operations coincide with
the addition and multiplication of functions when the power series converge for
appropriate values of x, and they obey such familiar laws of algebra as associativity
and commutativity of addition and multiplication, distributivity of multiplication
over addition, and cancellation of multiplication (i.e., if F(x)G(x)= F(x)H(x)
and F(x) 	= 0, then G(x) = H(x)). In fact, the set of all formal power series∑
n≥0 anx

n with complex coefficients an (or more generally, coefficients in any
integral domain R, where integral domains are assumed to be commutative with a
multiplicative identity 1) forms a (commutative) integral domain under the oper-
ations just defined. This integral domain is denoted C[[x]] (or more generally,
R[[x]]). Actually, C[[x]], or more generally K[[x]] when K is a field, is a very
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1.1 How to Count 5

special type of integral domain. For readers with some familiarity with algebra, we
remark that C[[x]] is a principal ideal domain and therefore a unique factorization
domain. In fact, every ideal of C[[x]] has the form (xn) for some n≥ 0. From the
viewpoint of commutative algebra, C[[x]] is a one-dimensional complete regular
local ring. Moreover, the operation [xn] : C[[x]] → C of taking the coefficient of
xn (and similarly [xn/n!]) is a linear functional on C[[x]]. These general algebraic
considerations will not concern us here; rather we will discuss from an elementary
viewpoint the properties of C[[x]] that will be useful to us.

There is an obvious extension of the ring C[[x]] to formal power series in m
variables x1, . . . ,xm. The set of all such power series with complex coefficients
is denoted C[[x1, . . . ,xm]] and forms a unique factorization domain (though not a
principal ideal domain for m≥ 2).

It is primarily through experience that the combinatorial significance of the
algebraic operations of C[[x]] or C[[x1, . . . ,xm]] is understood, as well as the
problems of whether to use ordinary or exponential generating functions (or various
other kinds discussed in later chapters). In Section 3.18 we will explain to some
extent the combinatorial significance of these operations, but even then experience
is indispensable.

If F(x) and G(x) are elements of C[[x]] satisfying F(x)G(x) = 1, then we
(naturally) write G(x) = F(x)−1. (Here 1 is short for 1 + 0x + 0x2 + ·· · .) It is
easy to see that F(x)−1 exists (in which case it is unique) if and only if a0 	= 0,
whereF(x)=∑n≥0 anx

n. One commonly writes “symbolically” a0 =F(0), even
though F(x) is not considered to be a function of x. If F(0) 	= 0 and F(x)G(x)=
H(x), then G(x) = F(x)−1H(x), which we also write as G(x) = H(x)/F (x).
More generally, the operation−1 satisfies all the familiar laws of algebra, pro-
vided it is only applied to power series F(x) satisfying F(0) 	= 0. For instance,
(F (x)G(x))−1 = F(x)−1G(x)−1, (F (x)−1)−1 = F(x), and so on. Similar results
hold for C[[x1, . . . ,xm]].

1.1.5 Example. Let
(∑

n≥0α
nxn
)
(1 − αx) =∑n≥0 cnx

n, where α is nonzero
complex number. (We could also take α to be an indeterminate, in which case we
should extend the coefficient field to C(α), the field of rational functions over C
in the variable α.) Then by definition of power series multiplication,

cn =
{

1, n= 0
αn−α(αn−1)= 0, n≥ 1.

Hence,
∑
n≥0α

nxn = (1 −αx)−1, which can also be written∑
n≥0

αnxn = 1

1 −αx .

This formula comes as no surprise; it is simply the formula (in a formal setting)
for summing a geometric series.
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6 What Is Enumerative Combinatorics?

Example 1.1.5 provides a simple illustration of the general principle that, infor-
mally speaking, if we have an identity involving power series that is valid when the
power series are regarded as functions (so that the variables are sufficiently small
complex numbers), then this identity continues to remain valid when regarded as
an identity among formal power series, provided the operations defined in the for-
mulas are well defined for formal power series. It would be unnecessarily pedantic
for us to state a precise form of this principle here, since the reader should have
little trouble justifying in any particular case the formal validity of our manipula-
tions with power series. We will give several examples throughout this section to
illustrate this contention.

1.1.6 Example. The identity∑
n≥0

xn

n!

∑
n≥0

(−1)n
xn

n!

= 1 (1.3)

is valid at the function-theoretic level (it states that exe−x = 1) and is well defined
as a statement involving formal power series. Hence, (1.3) is a valid formal power
series identity. In other words (equating coefficients of xn/n! on both sides of
(1.3)), we have

n∑
k=0

(−1)k
(
n

k

)
= δ0n. (1.4)

To justify this identity directly from (1.3), we may reason as follows. Both sides
of (1.3) converge for all x ∈ C, so we have

∑
n≥0

(
n∑
k=0

(−1)k
(
n

k

))
xn

n! = 1, for all x ∈ C.

But if two power series in x represent the same function f (x) in a neighborhood of
0, then these two power series must agree term-by-term, by a standard elementary
result concerning power series. Hence, (1.4) follows.

1.1.7 Example. The identity∑
n≥0

(x+ 1)n

n! = e
∑
n≥0

xn

n!

is valid at the function-theoretic level (it states that ex+1 = e ·ex) but does not make
sense as a statement involving formal power series. There is no formal procedure
for writing

∑
n≥0(x + 1)n/n! as a member of C[[x]]. For instance, the constant

term of
∑
n≥0(x + 1)n/n! is

∑
n≥0 1/n!, whose interpretation as a member of

C[[x]] involves the consideration of convergence.
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1.1 How to Count 7

Although the expression
∑
n≥0(x+1)n/n! does not make sense formally, there

are nevertheless certain infinite processes that can be carried out formally in C[[x]].
(These concepts extend straightforwardly to C[[x1, . . . ,xm]], but for simplicity we
consider only C[[x]].) To define these processes, we need to put some additional
structure on C[[x]]—namely, the notion of convergence. From an algebraic stand-
point, the definition of convergence is inherent in the statement that C[[x]] is
complete in a certain standard topology that can be put on C[[x]]. However, we
will assume no knowledge of topology on the part of the reader and will instead
give a self-contained, elementary treatment of convergence.

If F1(x),F2(x), . . . is a sequence of formal power series, and if F(x) =∑
n≥0 anx

n is another formal power series, we say by definition that Fi(x) con-
verges to F(x) as i → ∞, written Fi(x) → F(x) or limi→∞Fi(x) = F(x),
provided that for all n ≥ 0 there is a number δ(n) such that the coefficient of
xn in Fi(x) is an whenever i ≥ δ(n). In other words, for every n the sequence

[xn]F1(x), [xn]F2(x), . . .

of complex numbers eventually becomes constant (or stabilizes) with value an.
An equivalent definition of convergence is the following. Define the degree of a
nonzero formal power series F(x)=∑n≥0 anx

n, denoted degF(x), to be the least
integer n such that an 	= 0. Note that degF(x)G(x)= degF(x)+degG(x). Then
Fi(x) converges if and only if limi→∞ deg(Fi+1(x)− Fi(x)) = ∞, and Fi(x)
converges to F(x) if and only if limi→∞ deg(F (x)−Fi(x))= ∞.

We now say that an infinite sum
∑
j≥0Fj (x) has the value F(x) provided

that
∑i
j=0Fj (x) → F(x). A similar definition is made for the infinite product∏

j≥1Fj (x). To avoid unimportant technicalities we assume that, in any infinite
product

∏
j≥1Fj (x), each factor Fj (x) satisfies Fj (0)= 1.

For instance, let Fj (x) = ajx
j . Then for i ≥ n, the coefficient of xn in∑i

j=0Fj (x) is an. Hence
∑
j≥0Fj (x) is just the power series

∑
n≥0 anx

n. Thus,
we can think of the formal power series

∑
n≥0 anx

n as actually being the “sum”
of its individual terms. The proofs of the following two elementary results are left
to the reader.

1.1.8 Proposition. The infinite series
∑
j≥0Fj (x) converges if and only if

lim
j→∞degFj (x)= ∞.

1.1.9 Proposition. The infinite product
∏
j≥1(1 + Gj(x)), where Gj(0) = 0,

converges if and only if limj→∞ degGj(x)= ∞.

It is essential to realize that in evaluating a convergent series
∑
j≥0Fj (x) (or

similarly a product
∏
j≥1Fj (x)), the coefficient of xn for any given n can be
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8 What Is Enumerative Combinatorics?

computed using only finite processes. For if j is sufficiently large, say j > δ(n),
then degFj (x) > n, so that

[xn]
∑
j≥0

Fj (x)= [xn]
δ(n)∑
j=0

Fj (x).

The latter expression involves only a finite sum.
The most important combinatorial application of the notion of convergence is to

the idea of power series composition. If F(x)=∑n≥0 anx
n and G(x) are formal

power series with G(0) = 0, define the composition F(G(x)) to be the infinite
sum
∑
n≥0 anG(x)

n. Since degG(x)n = n · degG(x) ≥ n, we see by Proposi-
tion 1.1.8 that F(G(x)) is well defined as a formal power series. We also see why
an expression such as e1+x does not make sense formally; namely, the infinite series∑
n≥0(1 + x)n/n! does not converge in accordance with the preceding definition.

On the other hand, an expression like ee
x−1 makes good sense formally, since it

has the form F(G(x)) where F(x)=∑n≥0 x
n/n! and G(x)=∑n≥1 x

n/n!.

1.1.10 Example. If F(x) ∈ C[[x]] satisfies F(0)= 0, then we can define for any
λ ∈ C the formal power series

(1 +F(x))λ =
∑
n≥0

(
λ

n

)
F(x)n, (1.5)

where
(
λ
n

)=λ(λ−1) · · ·(λ−n+1)/n!. In fact, we may regardλ as an indeterminate
and take (1.5) as the definition of (1 +F(x))λ as an element of C[[x,λ]] (or of
C[λ][[x]]; that is, the coefficient of xn in (1 +F(x))λ is a certain polynomial in
λ). All the expected properties of exponentiation are indeed valid, such as

(1 +F(x))λ+µ = (1 +F(x))λ(1 +F(x))µ,

regarded as an identity in the ring C[[x,λ,µ]], or in the ring C[[x]] where one
takes λ,µ ∈ C.

If F(x)=∑n≥0 anx
n, define the formal derivative F ′(x) (also denoted dF

dx
or

DF(x)) to be the formal power series

F ′(x)=
∑
n≥0

nanx
n−1 =
∑
n≥0

(n+ 1)an+1x
n.

It is easy to check that all the familiar laws of differentiation that are well defined
formally continue to be valid for formal power series, In particular,

(F +G)′ = F ′ +G′,

(FG)′ = F ′G+FG′,

F(G(x))′ =G′(x)F ′(G(x)).
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1.1 How to Count 9

We thus have a theory of formal calculus for formal power series. The usefulness
of this theory will become apparent in subsequent examples. We first give an
example of the use of the formal calculus that should shed some additional light
on the validity of manipulating formal power series F(x) as if they were actual
functions of x.

1.1.11 Example. Suppose F(0)= 1, and letG(x) be the power series (easily seen
to be unique) satisfying

G′(x)= F ′(x)/F (x), G(0)= 0. (1.6)

From the function-theoretic viewpoint we can “solve” (1.6) to obtain F(x) =
expG(x), where by definition

expG(x)=
∑
n≥0

G(x)n

n! .

SinceG(0)= 0 everything is well defined formally, so (1.6) should remain equiv-
alent to F(x) = expG(x) even if the power series for F(x) converges only at
x = 0. How can this assertion be justified without actually proving a combinato-
rial identity? Let F(x) = 1 +∑n≥1 anx

n. From (1.6) we can compute explicitly
G(x)=∑n≥1 bnx

n, and it is quickly seen that each bn is a polynomial in finitely
many of the ai’s. It then follows that if expG(x)= 1+∑n≥1 cnx

n, then each cnwill
also be a polynomial in finitely many of the ai’s, say cn=pn(a1,a2, . . . ,am), where
m depends on n. Now we know that F(x) = expG(x) provided 1 +∑n≥1 anx

n

converges. If two Taylor series convergent in some neighborhood of the ori-
gin represent the same function, then their coefficients coincide. Hence an =
pn(a1,a2, . . . ,am) provided 1+∑n≥1 anx

n converges. Thus, the two polynomials
an andpn(a1, . . . ,am) agree in some neighborhood of the origin of Cm, so they must
be equal. (It is a simple result that if two complex polynomials inm variables agree
in some open subset of Cm, then they are identical.) Since an = pn(a1,a2, . . . ,am)
as polynomials, the identity F(x)= expG(x) continues to remain valid for formal
power series.

There is an alternative method for justifying the formal solution F(x) =
expG(x) to (1.6), which may appeal to topologically inclined readers. GivenG(x)
with G(0)= 0, define F(x)= expG(x) and consider a map φ : C[[x]] → C[[x]]
defined by φ(G(x)) =G′(x)− F ′(x)

F (x)
. One easily verifies the following: (a) if G

converges in some neighborhood of 0, then φ(G(x))= 0; (b) the set G of all power
seriesG(x) ∈ C[[x]] that converge in some neighborhood of 0 is dense in C[[x]],
in the topology defined earlier (in fact, the set C[x] of polynomials is dense); and
(c) the function φ is continuous in the topology defined earlier. From this it follows
that φ(G(x))= 0 for all G(x) ∈ C[[x]] with G(0)= 0.

We now present various illustrations in the manipulation of generating func-
tions. Throughout we will be making heavy use of the principle that formal power
series can be treated as if they were functions.
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10 What Is Enumerative Combinatorics?

1.1.12 Example. Find a simple expression for the generating function F(x) =∑
n≥0 anx

n, where a0 = a1 = 1, an = an−1 + an−2 if n≥ 2. We have

F(x)=
∑
n≥0

anx
n = 1 + x+

∑
n≥2

anx
n

= 1 + x+
∑
n≥2

(an−1 + an−2)x
n

= 1 + x+ x
∑
n≥2

an−1x
n−1 + x2

∑
n≥2

an−2x
n−2

= 1 + x+ x(F (x)− 1)+ x2F(x).

Solving for F(x) yields F(x) = 1/(1 − x − x2). The number an is just the
Fibonacci number Fn+1. For some combinatorial properties of Fibonacci numbers,
see Exercises 1.35–1.42. For the general theory of rational generating functions
and linear recurrences with constant coefficients illustrated in the present example,
see Section 4.1.

1.1.13 Example. Find a simple expression for the generating function F(x) =∑
n≥0 anx

n/n!, where a0 = 1,

an+1 = an+nan−1, n≥ 0. (1.7)

(Note that if n = 0 we get a1 = a0 + 0 · a−1, so the value of a−1 is irrelevant.)
Multiply the recurrence (1.7) by xn/n! and sum on n≥ 0. We get∑

n≥0

an+1
xn

n! =
∑
n≥0

an
xn

n! +
∑
n≥0

nan−1
xn

n!

=
∑
n≥0

an
xn

n! +
∑
n≥1

an−1
xn

(n− 1)! .

The left-hand side is just F ′(x), while the right-hand side is F(x)+xF(x). Hence,
F ′(x)= (1 + x)F (x). The unique solution to this differential equation satisfying
F(0)= 1 is F(x)= exp

(
x+ 1

2x
2
)
. (As shown in Example 1.1.11, solving this dif-

ferential equation is a purely formal procedure.) For the combinatorial significance
of the numbers an, see equation (5.32).

Note. With the benefit of hindsight we wrote the recurrence an+1 = an+ nan−1

with indexing that makes the computation simplest. If for instance we had written
an= an−1+(n−1)an−2, then the computation would be more complicated (though
still quite tractable). In converting recurrences to generating function identities, it
can be worthwhile to consider how best to index the recurrence.

1.1.14 Example. Let µ(n) be the Möbius function of number theory; that is,
µ(1)= 1, µ(n)= 0 if n is divisible by the square of an integer greater than one,
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