Contents

Preface page xi

1 Historical Remarks 1
 1.1 Early Pioneers 1
 1.2 The Photographic Era 6
 1.3 The Impact of Linear Detectors 10
 1.4 Extending the Wavelength Range 19

2 Spectroscopy in Present-Day Astronomy 26
 2.1 Spectral Classification 26
 2.2 Radial Velocities 30
 2.3 Gravitational and Cosmological Redshifts 32
 2.4 Astrophysical Applications 35
 2.5 Magnetic Fields 43
 2.6 The Importance of Spectral Resolution 46

3 Basic Physics of Spectral Measurements 50
 3.1 Electromagnetic Radiation 50
 3.2 Measuring Frequencies 54
 3.3 Measuring Wavelengths 55
 3.4 Accuracy Limits 76

4 Optical-Range Grating and Prism Spectrometers 81
 4.1 Commercially Available Spectrometers 81
 4.2 Basic Components of Astronomical Spectrometers 82
 4.3 Slitless Spectroscopy 85
 4.4 Single-Object Slit Spectrometers 87
 4.5 Fiber-Coupled Instruments 107
Table of Contents

4.6 Multiobject Spectrometers 110
4.7 Integral Field Spectroscopy 115
4.8 Cold IR Spectrometers 119

5 Other Techniques for the Optical Spectral Range 127
5.1 Fabry-Perot Techniques 127
5.2 Fourier Transform Spectrometers 134
5.3 Direct Detection of Visual Photon Energies 138

6 Preparing and Reducing Optical Observations 145
6.1 Planning and Preparing Observing Runs 145
6.2 The Execution Phase 154
6.3 Calibration Procedures 156
6.4 Reduction of Raw Spectra 159
6.5 Archiving Spectral Data 176

7 UV, X-Ray, and Gamma Spectroscopy 179
7.1 UV and X-Ray Optics 180
7.2 UV Spectrometers 187
7.3 Photon-Energy Sensitive X-Ray Detectors 189
7.4 X-Ray Grating Spectrometers 191
7.5 Gamma Spectroscopy 194

8 Spectroscopy at Radio Wavelengths 200
8.1 Detection of Radio Waves from Space 201
8.2 Filter Banks 203
8.3 Fast Fourier-Transform Spectrometers 204
8.4 Autocorrelation Techniques 206
8.5 Cross-Correlation Spectroscopy with Arrays 209
8.6 Acousto-Optical Instruments 210
8.7 Chirp-Transform Spectrometers 212

9 Special Techniques of the FIR and Submillimeter Range 214
9.1 Spectroscopy with Bolometers 215
9.2 Heterodyne Spectroscopy at FIR and Submillimeter Wavelengths 221

10 New Developments and Future Prospects 224
10.1 Scientific Drivers 224
10.2 New Facilities 225
Contents

10.3 New Technologies 231
10.4 Organizational Challenges 236

Appendix: List of Acronyms 239
References 245
Index 251