
Cambridge University Press
978-1-107-60109-3 — Surveys in Combinatorics 2011
Edited by Robin Chapman
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Counting planar maps, coloured or uncoloured

Mireille Bousquet-Mélou

Abstract

We present recent results on the enumeration of q-coloured planar maps,
where each monochromatic edge carries a weight ν. This is equivalent to weight-
ing each map by its Tutte polynomial, or to solving the q-state Potts model on
random planar maps. The associated generating function, obtained by Olivier
Bernardi and the author, is differentially algebraic. That is, it satisfies a (non-
linear) differential equation. The starting point of this result is a functional
equation written by Tutte in 1971, which translates into enumerative terms
a simple recursive description of planar maps. The proof follows and adapts
Tutte’s solution of properly q-coloured triangulations (1973-1984).

We put this work in perspective with the much better understood enumera-
tion of families of uncoloured planar maps, for which the recursive approach al-
most systematically yields algebraic generating functions. In the past 15 years,
these algebraicity properties have been explained combinatorially by illumi-
nating bijections between maps and families of plane trees. We survey both
approaches, recursive and bijective.

Comparing the coloured and uncoloured results raises the question of de-
signing bijections for coloured maps. No complete bijective solution exists at
the moment, but we present bijections for certain specialisations of the gen-
eral problem. We also show that for these specialisations, Tutte’s functional
equation is much easier to solve that in the general case.

We conclude with some open questions.

1 Introduction

A planar map is a proper embedding in the sphere of a finite connected graph,
defined up to continuous deformation. The enumeration of these objects has been a
topic of constant interest for 50 years, starting with a series of papers by Tutte in
the early 1960s; these papers were mostly based on recursive descriptions of maps
(e.g. [103]). The last 15 years have witnessed a new burst of activity in this field,
with the development of rich bijective approaches [98, 39], and their applications
to the study of random maps of large size [78, 85]. In such enumerative problems,
maps are usually rooted by orienting one edge. Figure 1 sets a first exercise in map
enumeration.

Figure 1: There are 9 rooted planar maps with two edges.
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Planar maps are not only studied in combinatorics and probability, but also in
theoretical physics. In this context, maps are considered as random surfaces, and
constitute a model of 2-dimensional quantum gravity. For many years, maps were
studied independently in combinatorics and in physics, and another approach for
counting them, based on the evaluation of certain matrix integrals, was introduced
in the 1970s in physics [42, 18], and much developed since then [55, 88]. More
recently, a fruitful exchange started between the two communities. Some physicists
have become masters in combinatorial methods [35, 37], while the matrix integral
approach has been taken over by some probabilists [71].

From the physics point of view, it is natural to equip maps with additional struc-
tures, like particles, trees, spins, and more generally classical models of statistical
physics. In combinatorics however, a huge majority of papers deal with the enumer-
ation of bare maps. There has been some exceptions to this rule in the past few
years, with combinatorial solutions of the Ising and hard-particle models on planar
maps [34, 38, 39]. But there is also an earlier, and major, exception to this rule:
Tutte’s study of properly q-coloured triangulations (Figure 2).

Figure 2: A (rooted) triangulation of the sphere, properly coloured with 4 colours.

This ten years long study (1973-1984) plays a central role in this paper. For
a very long time, it remained an isolated tour de force with no counterpart for
other families of planar maps or for more general colourings, probably because the
corresponding series of papers [110, 108, 107, 109, 111, 112, 113, 114, 115, 116]
looks quite formidable. Our main point here is to report on recent advances in the
enumeration of (non-necessarily properly) q-coloured maps, in the steps of Tutte. In
the associated generating function, every monochromatic edge is assigned a weight ν:
the case ν = 0 thus captures proper colourings. In physics terms, we are studying
the q-state Potts model on planar maps. A third equivalent formulation is that we
count planar maps weighted by their Tutte polynomial — a bivariate generalisation
of the chromatic polynomial, introduced by Tutte, who called it the dichromatic
polynomial. Since the Tutte polynomial has numerous interesting specialisations,
giving for example the number of trees, forests, acyclic orientations, proper colourings
of course, or the partition function of the Ising model, or the reliability and flow
polynomials, we are covering several models at the same time.

We shall put this work in perspective with the (much better understood) enumer-
ation of uncoloured maps, to which we devote Sections 3 and 4. We first present in
Section 3 the robust recursive approach found in the early work of Tutte. It applies
in a rather uniform way to many families of maps, and yields for their generating
functions functional equations that we call polynomial equations with one catalytic
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variable. A typical example is (3.1). It is now understood that the solutions of these
equations are always algebraic, that is, satisfy a polynomial equation. For instance,
there are 2 · 3n

(

2n
n

)

/((n + 1)(n + 2)) rooted planar maps with n edges, and their
generating function, that is, the series

M(t) :=
∑

n≥0

2 · 3n

(n + 1)(n + 2)

(

2n

n

)

tn,

satisfies

M(t) = 1 − 16t + 18tM(t) − 27t2M(t)2.

Thus algebraicity is intimately connected with (uncoloured) planar maps. In
Section 4, we present two more recent bijective approaches that relate maps to plane
trees, which are algebraic objects par excellence. Not only do these bijections give
a better understanding of algebraicity properties, but they also explain why many
families of maps are counted by simple formulas.

In Section 5, we discuss the recursive approach for q-coloured maps. The cor-
responding functional equation (5.3) was written in 1971 by Tutte —who else?—,
but was left untouched since then. It involves two “catalytic” variables, and it has
been known for a long time that its solution is not algebraic. The key point of this
section, due to Olivier Bernardi and the author, is the solution of this equation, in
the form of a system of differential equations that defines the generating function of
q-coloured maps. This series is thus differentially algebraic, like Tutte’s solution of
properly coloured triangulations. Halfway on the long path that leads to the solution
stands an interesting intermediate result: when q �= 4 is of the form 2+2 cos(jπ/m),
for integers j and m, the generating function of q-coloured planar maps is algebraic.
This includes the values q = 2 and q = 3, for which we give explicit results. We also
discuss certain specialisations for which the equation becomes easier to solve, like the
enumeration of maps equipped with a bipolar orientation, or with a spanning tree.

Since we are still in the early days of the enumeration of coloured maps, it is
not surprising that bijective approaches are at the moment one step behind. Still, a
few bijections are available for some of the simpler specialisations mentioned above.
They are presented in Section 6. We conclude with open questions, dealing with
both uncoloured and coloured enumeration.

This survey is sometimes written in an informal style, especially when we de-
scribe bijections. Proofs are only given when they are new, or especially simple and
illuminating. The reference list, although long, is certainly not exhaustive. In par-
ticular, the papers cited in this introduction are just examples illustrating our topic,
and should be considered as pointers to the relevant literature. More references are
given further in the paper. Two approaches that have been used to count maps are
utterly absent from this paper: methods based on characters of the symmetric group
and symmetric functions [68, 69], which do not exactly address the same range of
problems, and the matrix integral approach, which is powerful [55], but is not always
fully rigorous. The Potts model has been addressed via matrix integrals [51, 56, 123].
We refer to [15] for a description our current understanding of this work.
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2 Definitions and notation

2.1 Planar maps

A planar map is a proper embedding of a connected planar graph in the oriented
sphere, considered up to orientation preserving homeomorphism. Loops and mul-
tiple edges are allowed. The faces of a map are the connected components of its
complement. The numbers of vertices, edges and faces of a planar map M , denoted
by v(M), e(M) and f(M), are related by Euler’s relation v(M) + f(M) = e(M) + 2.
The degree of a vertex or face is the number of edges incident to it, counted with
multiplicity. A map is m-valent if all its vertices have degree m. A corner is a sector
delimited by two consecutive edges around a vertex; hence a vertex or face of degree
k defines k corners. The dual of a map M , denoted M∗, is the map obtained by
placing a vertex of M∗ in each face of M and an edge of M∗ across each edge of M ;
see Figure 3.

For counting purposes it is convenient to consider rooted maps. A map is rooted
by orienting an edge, called the root-edge. The origin of this edge is the root-vertex.
The face that lies to the right of the root-edge is the root-face. In figures, we take the
root-face as the infinite face (Figure 3). This explains why we often call the root-face
the outer (or: infinite) face, and its degree the outer degree. The other faces are said
to be finite. From now on, every map is planar and rooted. By convention, we include
among rooted planar maps the atomic map m0 having one vertex and no edge. The
set of rooted planar maps is denoted M.

A map is separable if it is atomic or can be obtained by gluing two non-atomic
maps at a vertex. Observe that both maps with one edge are non-separable.

Figure 3: A rooted planar map and its dual (rooted at the dual edge).

2.2 Power series

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp.
A[[x]]) the ring of polynomials (resp. formal power series) in x with coefficients in
A. If A is a field, then A(x) denotes the field of rational functions in x, and A((x))
the field of Laurent series1 in x. These notations are generalised to polynomials,
fractions and series in several indeterminates. We denote by bars the reciprocals of
variables: that is, x̄ = 1/x, so that A[x, x̄] is the ring of Laurent polynomials in
x with coefficients in A. The coefficient of xn in a Laurent series F (x) is denoted

1A Laurent series is a series of the form
∑

n≥n0
a(n)xn, for some n0 ∈ Z.
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by [xn]F (x). The valuation of a Laurent series F (x) is the smallest d such that xd

occurs in F (x) with a non-zero coefficient. If F (x) = 0, then the valuation is +∞. If
F (x; t) is a power series in t with coefficients in A((x)), that is, a series of the form

F (x; t) =
∑

n≥0,i∈Z

f(i;n)xitn,

where for all n, almost all coefficients f(i;n) such that i < 0 are zero, then the
positive part of F (x; t) in x is the following series, which has coefficients in xA[[x]]:

[x>]F (x; t) :=
∑

n≥0,i>0

f(i;n)xitn.

We define similarly the non-negative part of F (x; t) in x.
A power series F (x1, . . . , xk) ∈ K[[x1, . . . , xk]], where K is a field, is algebraic (over

K(x1, . . . , xk)) if it satisfies a polynomial equation P (x1, . . . , xk, F (x1, . . . , xk)) = 0.
The series F (x1, . . . , xk) is D-finite if for all i ≤ k, it satisfies a (non-trivial) linear
differential equation in xi with coefficients in K[x1, . . . , xk]. We refer to [81, 82] for a
study of these series. All algebraic series are D-finite. A series F (x) is differentially
algebraic if it satisfies a (non-necessarily linear) differential equation with coefficients
in K[x].

2.3 The Potts model and the Tutte polynomial

Let G be a graph with vertex set V (G) and edge set E(G). Let ν be an inde-
terminate, and take q ∈ N. A colouring of the vertices of G in q colours is a map
c : V (G) → {1, . . . , q}. An edge of G is monochromatic if its endpoints share the
same colour. Every loop is thus monochromatic. The number of monochromatic
edges is denoted by m(c). The partition function of the Potts model on G counts
colourings by the number of monochromatic edges:

PG(q, ν) =
∑

c:V (G)→{1,...,q}

νm(c).

The Potts model is a classical magnetism model in statistical physics, which includes
(for q = 2) the famous Ising model (with no magnetic field) [120]. Of course, PG(q, 0)
is the chromatic polynomial of G.

If G1 and G2 are disjoint graphs and G = G1 ∪ G2, then clearly

PG(q, ν) = PG1
(q, ν)PG2

(q, ν). (2.1)

If G is obtained by attaching G1 and G2 at one vertex, then

PG(q, ν) =
1

q
PG1

(q, ν)PG2
(q, ν). (2.2)

The Potts partition function can be computed by induction on the number of
edges. If G has no edge, then PG(q, ν) = q|V (G)|. Otherwise, let e be an edge of G.
Denote by G\e the graph obtained by deleting e, and by G/e the graph obtained by
contracting e (if e is a loop, then it is simply deleted). Then

PG(q, ν) = PG\e(q, ν) + (ν − 1)PG/e(q, ν). (2.3)
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Indeed, it is not hard to see that ν PG/e(q, ν) counts colourings for which e is
monochromatic, while PG\e(q, ν) − PG/e(q, ν) counts those for which e is bichro-
matic. One important consequence of this induction is that PG(q, ν) is always a
polynomial in q and ν. We call it the Potts polynomial of G. Since it is a polynomial,
we will no longer consider q as an integer, but as an indeterminate, and sometimes
evaluate PG(q, ν) at real values q. We also observe that PG(q, ν) is a multiple of q:
this explains why we will weight maps by PG(q, ν)/q.

Up to a change of variables, the Potts polynomial is equivalent to another, maybe
better known, invariant of graphs, namely the Tutte polynomial TG(µ, ν) (see e.g.
[19]):

TG(µ, ν) :=
∑

S⊆E(G)

(µ − 1)c(S)−c(G)(ν − 1)e(S)+c(S)−v(G),

where the sum is over all spanning subgraphs of G (equivalently, over all subsets of
edges) and v(.), e(.) and c(.) denote respectively the number of vertices, edges and
connected components. For instance, the Tutte polynomial of a graph with no edge
is 1. The equivalence with the Potts polynomial was established by Fortuin and
Kasteleyn [62]:

PG(q, ν) =
∑

S⊆E(G)

qc(S)(ν − 1)e(S) = (µ − 1)c(G)(ν − 1)v(G)
TG(µ, ν), (2.4)

for q = (µ − 1)(ν − 1). In this paper, we work with PG rather than TG because
we wish to assign real values to q (this is more natural than assigning real values to
(µ − 1)(ν − 1)). However, one property looks more natural in terms of TG: if G and
G∗ are dual connected planar graphs (that is, if G and G∗ can be embedded as dual
planar maps) then

TG∗(µ, ν) = TG(ν, µ).

Translating this identity in terms of Potts polynomials thanks to (2.4) gives:

PG∗(q, ν) = q(ν − 1)v(G∗)−1
TG∗(µ, ν)

= q(ν − 1)v(G∗)−1
TG(ν, µ)

=
(ν − 1)e(G)

qv(G)−1
PG(q, µ), (2.5)

where µ = 1+q/(ν−1) and the last equality uses Euler’s relation: v(G)+v(G∗)−2 =
e(G).

3 Uncoloured planar maps: the recursive approach

In this section, we describe the first approach that was used to count maps:
the recursive method. It is based on very simple combinatorial operations (like
the deletion or contraction of an edge), which translate into non-trivial functional
equations defining the generating functions. A recent theorem, generalising the so-
called quadratic method, states that the solutions of all equations of this type are
algebraic. Since the recursive method applies to many families of maps, numerous
algebraicity results follow.
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3.1 A functional equation for planar maps

Consider a rooted planar map, distinct from the atomic map. Delete the root-
edge. If this edge is an isthmus, one obtains two connected components M1 and
M2, and otherwise a single component M , which we can root in a canonical way
(Figure 4). Conversely, starting from an ordered pair (M1, M2) of maps, there is a
unique way to connect them by a new (root) edge. If one starts instead from a single
map M , there are d + 1 ways to add a root edge, where d = df(M) is the degree of
the root-face of M (Figure 5).

M1

M

M2

Figure 4: Deletion of the root-edge in a planar map.

M1

M

M2

Figure 5: Reconstruction of a planar map.

Hence, to derive from this recursive description of planar maps a functional equa-
tion for their generating function, we need to take into account the degree of the
root-face, by an additional variable y. Hence, let

M(t; y) =
∑

M∈M

te(M)ydf(M) =
∑

d≥0

ydMd(t)

be the generating function of planar maps, counted by edges and outer-degree. The
series Md(t) counts by edges maps with outer degree d. The recursive description of
maps translates as follows:

M(t; y) = 1 + y2tM(t; y)2 + t
∑

d≥0

Md(t)(y + y2 + · · · + yd+1)

= 1 + y2tM(t; y)2 + ty
yM(t; y) − M(t; 1)

y − 1
. (3.1)
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Indeed, connecting two maps M1 and M2 by an edge produces a map of outer-degree
df(M1) + df(M2) + 2, while the d + 1 ways to add an edge to a map M such that
df(M) = d produce d + 1 maps of respective outer degree 1, 2, . . . , d + 1, as can be
seen on Figure 5. The term 1 records the atomic map.

The above equation was first written by Tutte in 1968 [105]. It is typical of the
type of equation obtained in (recursive) map enumeration. More examples will be
given in Section 3.2. One important feature in this equation is the divided difference

yM(t; y) − M(t; 1)

y − 1
,

which prevents us from simply setting y = 1 to solve for M(t; 1) first, and then for
M(t; y). The parameter df(M), and the corresponding variable y, are said to be
catalytic for this equation — a terminology borrowed to Zeilberger [122].

Such equations do not only occur in connection with maps: they also arise in the
enumeration of polyominoes [24, 59, 101], lattice walks [31, 3, 52, 76, 96], permuta-
tions [25, 28, 121]... The solution of these equations has naturally attracted some
interest. The “guess and check” approach used in the early 1960s is now replaced by a
general method, which we present below in Section 3.3. This method implies in par-
ticular that the solution of any (well-founded) polynomial equation with one catalytic
variable is algebraic. It generalises the quadratic method developed by Brown [46] for
equations of degree 2 that involve a single additional unknown series (like M(t; 1)
in the equation above) and also the kernel method that applies to linear equations,
and seems to have first appeared in Knuth’s Art of Computer Programming [76,
Section 2.2.1, Ex. 4] (see also [2, 31, 96]).

Contraction vs. deletion. Before we move to more examples, let us make a
simple observation. Another natural way to decrease the edge number of a map is
to contract the root-edge, rather than delete it (if this edge is a loop, one just erases
it). When one tries to use this to count planar maps, one is lead to introduce the
degree of the root-vertex as a catalytic parameter, and a corresponding variable x in
the generating function. This yields the same equation as above:

M(t;x) = 1 + x2tM(t;x)2 + t
∑

d≥0

Md(t)(x + x2 + · · · + xd+1).

As illustrated by Figure 6, the term 1 records the atomic map, the second term
corresponds to maps in which the root-edge is a loop, and the third term to the
remaining cases. In particular, the sum (x + x2 + · · · + xd+1) now describes how to

M2
M1

Figure 6: Contraction of the root-edge in a planar map.
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distribute the adjacent edges when a new edge is inserted. Given that the contraction
operation is the dual of the deletion operation, it is perfectly natural to obtain the
same equation as before. The reason why we mention this alternative construction
is that, when we establish below a functional equation for maps weighted by their
Potts (or Tutte) polynomial, we will have to use simultaneously these two operations,
as suggested by the recursive description (2.3) of the Potts polynomial. This will
naturally result in equations with two catalytic variables x and y.

3.2 More functional equations

The recursive method is extremely robust. We illustrate this by a few exam-
ples. Two of them — maps with prescribed face degrees, and Eulerian maps with
prescribed face degrees — actually cover infinitely many families of maps. Some of
these examples also have a colouring flavour.

Maps with prescribed face degrees. Consider for instance the enumeration of
triangulations, that is, maps in which all faces have degree 3. The recursive deletion
of the root-edge gives maps in which all finite faces have degree 3, but the outer face
may have any degree: these maps are called near-triangulations. We denote by T
the set of near-triangulations. The deletion of the root-edge in a near triangulation
gives either two near-triangulations, or a single one, the outer degree of which is at
least two (Figure 7). In both cases, there is unique way to reconstruct the map we
started from. Let T (t; y) ≡ T (y) be the generating function of near-triangulations,
counted by edges and by the outer degree:

T (t; y) =
∑

M∈T

te(M)ydf(M) =
∑

d≥0

ydTd(t).

Figure 7: Deletion of the root-edge in a near-triangulation.

The above recursive description translates into

T (y) = 1 + ty2T (y)2 + t
T (y) − T0 − yT1

y
, (3.2)

where T0 = 1 counts the atomic map. We have again a divided difference, this time
at y = 0. Its combinatorial interpretation (“it is forbidden to add an edge to a map of
outer degree 0 or 1”) differs from the interpretation of the divided difference occurring
in (3.1) (“there are multiple ways to add an edge”). Still, both equations are of the
same type and will be solved by the same method. Note that we have omitted the
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variable t in the notation T (y), which we will do quite often in this paper, to avoid
heavy notation and enhance the catalytic parameter(s).

Consider now bipartite planar maps, that is, maps that admit a proper 2-colouring
(and then a unique one, if the root-vertex is coloured white). For planar maps, this is
equivalent to saying that all faces have an even degree. Let B(t; y) =

∑

d≥0 Bd(t)y
d

be the generating function of bipartite maps, counted by edges (variable t) and by
half the outer degree (variable y). Then the deletion of the root-edge translates as
follows (Figure 8):

B(y) = 1 + tyB(y)2 + t
∑

d≥0

Bd(y + y2 + · · · + yd)

= 1 + tyB(y)2 + ty
B(y) − B(1)

y − 1
. (3.3)

This is again a quadratic equation with one catalytic variable, y.

Figure 8: Deletion of the root-edge in a bipartite map.

More generally, it was shown by Bender and Canfield [6] that the recursive ap-
proach applies to any family of maps for which the face degrees belong to a given set
D, provided D differs from a finite union of arithmetic progressions by a finite set.
In all cases, the equation is quadratic, but may involve more than a single additional
unknown function. For instance, when counting near-quadrangulations rather than
near-triangulations, Eq. (3.2) is replaced by

Q(y) = 1 + ty2Q(y)2 + t
Q(y) − Q0 − yQ1 − y2Q2

y2
,

where Qi counts near-quadrangulations of outer degree i. Bender and Canfield solved
these equations using a theorem of Brown from which the quadratic method is de-
rived, proving in particular that the resulting generating function is always algebraic.
Their result only involves the edge number, but, when D is finite, it can be refined
by keeping track of the vertex degree distribution [29].

Eulerian maps with prescribed face degrees. A planar map is Eulerian if all
vertices have an even degree. Equivalently, its faces admit a proper 2-colouring (and
a unique one, if the root-face is coloured white). Of course, Eulerian maps are the
duals of bipartite maps, so that their generating function (by edges, and half-degree of
the root-vertex) satisfies (3.3). But we wish to impose conditions on the face degrees
of Eulerian maps (dually, on the vertex degrees of bipartite maps). This includes as
a special case the enumeration of (non-necessarily Eulerian) maps with prescribed

www.cambridge.org/9781107601093
www.cambridge.org

