
Introduction

Consider a linear system y = Φx where Φ can be taken as an m × n
matrix acting on Euclidean space or more generally, a linear operator on

a Hilbert space. We call the vector x a signal or input, Φ the transform–

sample matrix–filter and the vector y the sample or output. The problem

is to reconstruct x from y, or more generally, to reconstruct an altered

version of x from an altered y. For example, we might analyze the signal

x in terms of frequency components and various combinations of time

and frequency components y. Once we have analyzed the signal we may

alter some of the component parts to eliminate undesirable features or to

compress the signal for more efficient transmission and storage. Finally,

we reconstitute the signal from its component parts.

The three typical steps in this process are:

• Analysis. Decompose the signal into basic components. This is called

analysis. We will think of the signal space as a vector space and break

it up into a sum of subspaces, each of which captures a special feature

of a signal.

• Processing. Modify some of the basic components of the signal that

were obtained through the analysis. This is called processing.

• Synthesis. Reconstitute the signal from its (altered) component parts.

This is called synthesis. Sometimes, we will want perfect reconstruc-

tion. Sometimes only perfect reconstruction with high probability. If

we don’t alter the component parts, we usually want the synthesized

signal to agree exactly with the original signal. We will also be inter-

ested in the convergence properties of an altered signal with respect

to the original signal, e.g., how well a reconstituted signal, from which

some information may have been dropped, approximates the original

signal. Finally we look at problems where the “signal” lies in some
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2 Introduction

high dimensional Euclidean space in the form of discrete data and

where the “filter” is not necessarily linear.

We will look at several methods for signal analysis. We will cover:

• Fourier series and Fourier integrals, infinite products.

• Windowed Fourier transforms.

• Continuous wavelet transforms.

• Filter banks, bases, frames.

• Discrete transforms, Z transforms, Haar wavelets and Daubechies

wavelets, singular value decomposition.

• Compressive sampling/compressive sensing.

• Topics in the the parsimonious representation of data.

We break up our treatment into several cases, both theoretical and

applied: (1) The system is invertible (Fourier series, Fourier integrals,

finite Fourier transform, Z transform, Riesz basis, discrete wavelets, etc.).

(2) The system is underdetermined, so that a unique solution can be

obtained only if x is restricted (compressive sensing). (3) The system

is overdetermined (bandlimited functions, windowed Fourier transform,

continuous wavelet transform, frames). In the last case one can throw

away some information from y and still recover x. This is the motivation

of frame theory, discrete wavelets from continuous wavelets, Shannon

sampling, filterbanks, etc. (4) The signal space is a collection of data in

some containing Euclidean space.

Each of these cases has its own mathematical peculiarities and oppor-

tunity for application. Taken together, they form a logically coherent

whole.
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1

Normed vector spaces

The purpose of this chapter is to introduce key structural concepts that

are needed for theoretical transform analysis and are part of the com-

mon language of modern signal processing and computer vision. One of

the great insights of this approach is the recognition that natural ab-

stractions which occur in analysis, algebra and geometry help to unify

the study of the principal objects which occur in modern signal process-

ing. Everything in this book takes place in a vector space, a linear space

of objects closed under associative, distributive and commutative laws.

The vector spaces we study include vectors in Euclidean and complex

space and spaces of functions such as polynomials, integrable functions,

approximation spaces such as wavelets and images, spaces of bounded

linear operators and compression operators (infinite dimensional). We

also need geometrical concepts such as distance and shortest (perpen-

dicular) distance, and sparsity. This chapter first introduces important

concepts of vector space and subspace which allow for general ideas of

linear independence, span and basis to be defined. Span tells us for ex-

ample, that a linear space may be generated from a smaller collection

of its members by linear combinations. Thereafter, we discuss Riemann

integrals and introduce the notion of a normed linear space and metric

space. Metric spaces are spaces, nonlinear in general, where a notion

of distance and hence limit makes sense. Normed spaces are generaliza-

tions of “absolute value” spaces. All normed spaces are metric spaces.

The geometry of Euclidean space is founded on the familiar proper-

ties of length and angle. In Euclidean geometry, the angle between two

vectors is specified in terms of the dot product, which itself is formal-

ized by the notion of inner product. In this chapter, we introduce inner

product space, completeness and Hilbert space with important exam-

ples. An inner product space is a generalization of a dot product space
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4 Normed vector spaces

which preserves the concept of “perpendicular/orthonormal” or “short-

est distance.” It is a normed linear space satisfying a parallelogram law.

Completeness means, roughly, closed under limiting processes and the

most general function space admitting an inner product structure is a

Hilbert Space. Hilbert spaces lie at the foundation of much of modern

analysis, function theory and Fourier analysis, and provide the theoret-

ical setting for modern signal processing. A Hilbert space is a complete

inner product space. A basis is a spanning set which is linearly indepen-

dent. We introduce orthonormal bases in finite- and infinite-dimensional

Hilbert spaces and study bounded linear operators on Hilbert spaces.

The characterizations of inner products on Euclidean space allows us to

study least square and minimization approximations, singular values of

matrices and `1 optimization. An important idea developed is of natural

examples motivating an abstract theory which in turn leads to the abil-

ity to understand more complex objects but with the same underlying

features.

1.1 Definitions

The most basic object in this text is a vector space V over a field F, the

latter being the field of real numbers R or the field of complex numbers

C. The elements of F are called scalars. Vector spaces V or (linear spaces)

over fields F capture the essential properties of n ≥ 1 Euclidean space

Vn which is the space of all real (Rn) or complex (Cn) column vectors

with n entries closed under addition and scalar multiplication.

Definition 1.1 A vector space V over F is a collection of elements

(vectors) with the following properties:1

• For every pair u, v ∈ V there is defined a unique vector w = u+v ∈ V
(the sum of u and v)

• For every α ∈ F, u ∈ V there is defined a unique vector z = αu ∈ V
(product of α and u)

• Commutative, Associative and Distributive laws

1. u+ v = v + u

2. (u+ v) + w = u+ (v + w)

3. There exists a vector Θ ∈ V such that u+ Θ = u for all u ∈ V

1 We should strictly write (V,F) since V depends on the field over which is defined.
As this will be clear always, we suppress this notation.
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1.1 Definitions 5

4. For every u ∈ V there is a −u ∈ V such that u+ (−u) = Θ

5. 1u = u for all u ∈ V
6. α(βu) = (αβ)u for all α, β ∈ F
7. (α+ β)u = αu+ βu

8. α(u+ v) = αu+ αv

Vector spaces are often called “linear” spaces. Given any two elements

u, v ∈ V , by a linear combination of u, v we mean the sum αu+ βv for

any scalars α, β. Since V is a vector space, αu + βv ∈ V and is well

defined. Θ is called the zero vector.

Examples 1.2 (a) As we have noted above, for n ≥ 1, the space Vn is

a vector space if given u := (u1, ..., un) and v := (v1, ..., vn) in Vn we

define u+ v := (u1 + v1, ..., un + vn) and cu := (cu1, ..., cun) for any

c ∈ F.

(b) Let n,m ≥ 1 and letMm×n denote the space of all real matrices of

size m × n. Then Mm×n forms a real vector space under the laws

of matrix addition and scalar multiplication. The Θ element is the

matrix with all zero entries.

(c) Consider the space Πn, n ≥ 1 of real polynomials with degree ≤ n.

Then, with addition and scalar multiplication defined pointwise, Πn

becomes a real vector space. Note that the space of polynomials of

degree equal to n is not closed under addition and so is not a vector

space.2

(d) Let J be an arbitrary set and consider the space of functions FV (J)

as the space of all f : J → V . Then defining addition and scalar

multiplication by (f + g)(x) := f(x) + g(x) and (cf)(x) := cf(x)

for f, g ∈ FV and x ∈ J , FV (J) is a vector space over the same

field as V .

Sometimes, we are given a vector space V and a nonempty subset W

of V that we need to study. It may happen that W is not closed under

linear combinations. A nonempty subset of V will be called a subspace

of V if it is closed under linear combinations of its elements with respect

to the same field as V . More precisely we have

Definition 1.3 A nonempty set W in V is a subspace of V if αu+βv ∈
W for all α, β ∈ F and u, v ∈W .

2 Indeed, consider (x3 + 100) + (−x3 − x) = 100− x.
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6 Normed vector spaces

It’s easy to prove that W is itself a vector space over F and contains in

particular the zero element of of W . Here, V and the set {Θ} are called

the trivial subspaces of V .

We now list some examples of subspaces and non subspaces, some of

which are important in what follows, in order to remind the reader of

this idea.

Examples 1.4 (a) Let Vn = Rn and scalars ci, 1 ≤ i ≤ n be given.

Then the half space consisting of all n-tuples (u1, . . . , un−1, 0) with

ui ∈ Vn, 1 ≤ i ≤ n− 1 and the set of solutions (v1, . . . , vn) ∈ Vn to

the homogeneous linear equation

c1x1 + · · ·+ cnxn = 0

are each nontrivial subspaces.

(b) C(n)[a, b]: The space of all complex-valued functions with continu-

ous derivatives of orders 0, 1, 2, . . . n on the closed, bounded interval

[a, b] of the real line. Let t ∈ [a, b], i.e., a ≤ t ≤ b with a < b. Vector

addition and scalar multiplication of functions u, v ∈ C(n)[a, b] are

defined by

[u+ v](t) = u(t) + v(t) [αu](t) = αu(t).

The zero vector is the function Θ(t) ≡ 0.

(c) S(I): The space of all complex-valued step functions on the (bounded

or unbounded) interval I on the real line.3 s is a step function on

J if there are a finite number of non-intersecting bounded inter-

vals I1, . . . , Im and complex numbers c1, . . . , cm such that s(t) = ck
for t ∈ Ik, k = 1, . . . ,m and s(t) = 0 for t ∈ I − ∪mk=1Ik. Vector

addition and scalar multiplication of step functions s1, s2 ∈ S(I) are

defined by

[s1 + s2](t) = s1(t) + s2(t) [αs1](t) = αs1(t).

(One needs to check that s1 + s2 and αs1 are step functions.) The

zero vector is the function Θ(t) ≡ 0.

3 Intervals I are the only connected subsets of R of the form:

– closed, meaning [a, b] := {x ∈ R : a ≤ x ≤ b}
– open, meaning (a, b) := {x ∈ R : a < x < b}
– half open, meaning [a, b) or (a, b] where

[a, b) := {x ∈ R : a ≤ x < b}

and (a, b] is similarly defined. If either a or b is ±∞, then J is open at a or b
and J is unbounded. Otherwise, it is bounded.
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1.1 Definitions 7

(d) A(I): The space of all analytic functions on an open interval I. Here,

we recall that f is analytic on I if all its n ≥ 1 orders derivatives exist

and are finite on I and given any fixed a ∈ I, the series
∑∞
n=0 f

(n)(a)

(x− a)n/n! converges to f(x) for all x close enough to a.

(e) For clarity, we add a few examples of sets which are not subspaces.

We consider V3 for simplicity as our underlying vector space.

– The set of all vectors of the form (u1, u2, 1) ∈ R3. Note that

(0, 0, 0) is not in this set.

– The positive octant {(u1, u2, u3) : ui ≥ 0, 1 ≤ i ≤ 3}. Note that

this set is not closed under multiplication by negative scalars. 4

We now show that given any finite collection of vectors say

u(1), u(2), . . . , u(m) in V for some m ≥ 1, it is always possible to construct

a subspace of V containing u(1), u(2), . . . , u(m) and, moreover, this is the

smallest (nontrivial) subspace of V containing all these vectors. Indeed,

we have

Lemma 1.5 Let u(1), u(2), . . . , u(m) be a set of vectors in the vector

space V . Denote by [u(1), u(2), . . . , u(m)] the set of all vectors of the form

α1u
(1) +α2u

(2) + · · ·+αmu
(m) for αi ∈ F. The set [u(1), u(2), . . . , u(m)],

called the span of the set
{
u(1), ..., u(m)

}
, is the smallest subspace of V

containing u(1), u(2), . . . , u(m).

Proof Let u, v ∈ [u(1), u(2), . . . , u(m)]. Thus,

u =

m∑
i=1

αiu
(i), v =

m∑
i=1

βiu
(i)

so

αu+ βv =

m∑
i=1

(ααi + ββi)u
(i) ∈ [u(1), u(2), . . . , u(m)].

Clearly any subspace of V , containing u(1), u(2), . . . , u(m) will contain

[u(1), u(2), . . . , u(m)]. 2

Note that spanning sets in vector spaces generalize the geometric no-

tion of two vectors spanning a plane in R3. We now present three def-

initions of linear independence, dimensionality and basis and a useful

characterization of a basis. We begin with the idea of linear indepen-

dence. Often, all the vectors used to form a spanning set are essential.

4 In fact, see Exercise 1.7, it is instructive to show that there are only two
nontrivial subspaces of R3. (1) A plane passing through the origin and (2) a line
passing through the origin.
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8 Normed vector spaces

For example, if we wish to span a plane in R3, we cannot use fewer than

two vectors since the span of one vector is a line and thus not a plane.

In some problems, however, some elements of a spanning set may be

redundant. For example, we only need one vector to describe a line in

R3 but if we are given two vectors which are parallel then their span is

a line and so we really only need one of these to prescribe the line. The

idea of removing superfluous elements from a spanning set leads to the

idea of linear dependence which is given below.

Definition 1.6 The elements u(1), u(2), . . . , u(p) of V are linearly inde-

pendent if the relation α1u
(1) +α2u

(2) + · · ·+αpu(p) = Θ for αi ∈ F holds

only for α1 = α2 = · · · = αp = 0. Otherwise u(1), . . . , u(p) are linearly

dependent.

Examples 1.7 (a) Any collection of vectors which includes the zero

vector is linearly dependent.

(b) Two vectors are linearly dependent iff they are parallel. Indeed, if

u(1) = cu(2) for some c ∈ F and vectors u(1), u(2) ∈ V , then u(1) −
cu(2) = Θ is a nontrivial linear combination of u(1) and u(2) summing

to Θ. Conversely, if c1u
(1) + c2u

(2) = Θ and c1 6= 0, then u(1) =

−(c2/c1)u(2) and if c1 = 0 and c2 6= 0, then u(2) = Θ.

(c) The basic monomials
{

1, x, x2, x3, ..., xn
}

are linearly independent.

See Exercise 1.9.

(d) The set of quadratic trigonometric functions{
1, cosx, sinx, cos2 x, cosx sinx, sin2 x

}
is linearly dependent. Hint: use the fact that cos2 x+ sin2 x = 1.

Next, we have

Definition 1.8 V is n-dimensional if there exist n linearly independent

vectors in V and any n+ 1 vectors in V are linearly dependent.

Definition 1.9 V is finite dimensional if V is n-dimensional for some

integer n. Otherwise V is infinite dimensional.

For example, Vn is finite dimensional and all of the spaces C(n)[a, b],

S(I) and A(I) are infinite dimensional. Next, we define the concept of

a basis. In order to span a vector space or subspace, we know that we

must use a sufficient number of distinct elements. On the other hand,

we also know that including too many elements in a spanning set causes

problems with linear independence. Optimal spanning sets are called

bases. Bases are fundamental in signal processing, linear algebra, data

compression, imaging, control and many other areas of research. We have
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1.1 Definitions 9

Definition 1.10 If there exist vectors u(1), . . . , u(n), linearly indepen-

dent in V and such that every vector u ∈ V can be written in the form

u = α1u
(1) + α2u

(2) + · · ·+ αnu
(n), αi ∈ F,

({u(1), . . . , u(n)} spans V ), then V is n-dimensional. Such a set

{u(1), . . . , u(n)} is called a basis for V .

The following theorem gives a useful characterization of a basis.

Theorem 1.11 Let V be an n-dimensional vector space and u(1), . . . , u(n)

a linearly independent set in V . Then u(1), . . . , u(n) is a basis for V and

every u ∈ V can be written uniquely in the form

u = β1u
(1) + β2u

(2) + · · ·+ βnu
(n).

Proof Let u ∈ V . Then the set u(1), . . . , u(n), u is linearly dependent.

Thus there exist α1, · · · , αn+1 ∈ F, not all zero, such that

α1u
(1) + α2u

(2) + · · ·+ αnu
(n) + αn+1u = Θ.

If αn+1 = 0 then α1 = · · · = αn = 0. But this cannot happen, so

αn+1 6= 0 and hence

u = β1u
(1) + β2u

(2) + · · ·+ βnu
(n), βi = − αi

αn+1
.

Now suppose

u = β1u
(1) + β2u

(2) + · · ·+ βnu
(n) = γ1u

(1) + γ2u
(2) + · · ·+ γnu

(n).

Then

(β1 − γ1)u(1) + · · ·+ (βn − γn)u(n) = Θ.

But the ui form a linearly independent set, so β1− γ1 = 0, . . . , βn −
γn = 0. 2

Examples 1.12 • Vn: A standard basis is:

e(1) = (1, 0, . . . , 0), e(2) = (0, 1, 0, . . . , 0), . . . , e(n) = (0, 0, . . . , 1).

Proof

(α1, . . . , αn) = α1e
(1) + · · ·+ αne

(n),

so the vectors span. They are linearly independent because

(β1, · · · , βn) = β1e
(1) + · · ·+ βne

(n) = Θ = (0, · · · , 0)

if and only if β1 = · · · = βn = 0. 2
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10 Normed vector spaces

• V∞, the space of all (real or complex) infinity-tuples

(α1, α2, . . . , αn, · · · ).

1.2 Inner products and norms

The geometry of Euclidean space is built on properties of length and

angle. The abstract concept of a norm on a vector space formalizes the

geometrical notion of the length of a vector. In Euclidean geometry,

the angle between two vectors is specified by their dot product which

is itself formalized by the concept of inner product. As we shall see,

norms and inner products are basic in signal processing. As a warm up,

in this section, we will prove one of the most important inequalities in

the theory, namely the Cauchy–Schwarz inequality, valid in any inner

product space. The more familiar triangle inequality, follows from the

definition of a norm. Complete inner product spaces, Hilbert spaces, are

fundamental in what follows.

Definition 1.13 A vector space N over F is a normed linear space

(pre Banach space) if to every u ∈ N there corresponds a real scalar

||u|| (called the norm of u) such that

1. ||u|| ≥ 0 and ||u|| = 0 if and only if u = 0.

2. ||αu|| = |α| ||u|| for all α ∈ F.

3. Triangle inequality. ||u+ v|| ≤ ||u||+ ||v|| for all u, v ∈ N .

Assumption 3 is a generalization of the familiar triangle inequality in

R2 that the length of any side of a triangle is bounded by the sum of the

lengths of the other sides. This fact is actually an immediate consequence

of the Cauchy–Schwarz inequality which we will state and prove later in

this chapter.

Examples 1.14 • C(n)[a, b]: Set of all complex-valued functions with

continuous derivatives of orders 0, 1, 2, . . . , n on the closed interval

[a, b] of the real line. Let t ∈ [a, b], i.e., a ≤ t ≤ b with a < b. Vector

addition and scalar multiplication of functions u, v ∈ C(n)[a, b] are

defined by

[u+ v](t) = u(t) + v(t), [αu](t) = αu(t).

The zero vector is the function Θ(t) ≡ 0. We defined this space earlier,

but now we provide it with a norm defined by ||u|| =
∫ b
a
|u(t)| dt.
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