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Introduction

Let G be a finite group, p a prime, and S a Sylow p-subgroup of G.
Subsets of S are said to be fused in G if they are conjugate under some
element of G. The term “fusion” seems to have been introduced by Brauer
in the fifties, but the general notion has been of interest for over a century.
For example, in his text The Theory of Groups of Finite Order [Bu] (first
published in 1897), Burnside proved that if S is abelian then the normalizer
in G of S controls fusion in S. (A subgroup H of G is said to control fusion
in S if any pair of tuples of elements of S which are conjugate in G are also
conjugate under H.)

Initially, information about fusion was usually used in conjunction with
transfer, as in the proof of the normal p-complement theorems of Burnside
and Frobenius, which showed that, under suitable hypotheses on fusion,
G possesses a normal p-complement: a normal subgroup of index |S| in
G. But in the sixties and seventies more sophisticated results on fusion
began to appear, such as Alperin’s Fusion Theorem [Al1], which showed
that the family of normalizers of suitable subgroups of S control fusion in
S, and Goldschmidt’s Fusion Theorem [Gd3], which determined the groups
G possessing a nontrivial abelian subgroup A of S such that no element of
A is fused into S �A.

In the early nineties, Lluis Puig abstracted the properties of G-fusion
in a Sylow subgroup S, in his notion of a Frobenius category on a finite p-
group S, by discarding the group G and focusing instead on isomorphisms
between subgroups of S. (But even earlier in 1976 in [P1], Puig had already
considered the standard example FS(G) of a Frobenius category, defined
below.) Puig did not publish his work until his 2006 paper [P6] and his 2009
book [P7]. Meanwhile, his approach was taken up and extended by others,
and in the process, alternate terminology evolved which is now commonly
used, and which we therefore have adopted here. In particular, Puig’s
Frobenius categories are now referred to as “saturated fusion systems” in
most of the literature.

A fusion system F on a finite p-group S is a category whose objects
are the subgroups of S, with the set HomF (P,Q) of morphisms from P
to Q consisting of monomorphisms from P into Q, and such that some
weak axioms are satisfied (see Definition I.2.1 for the precise conditions).
The standard example of a fusion system is the category FS(G), where G
is a finite group, S ∈ Sylp(G), and the morphisms are those induced by
conjugation in G. A fusion system F is saturated if it satisfies two more
axioms (Definition I.2.2), which hold in FS(G) as a consequence of Sylow’s
Theorem.
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2 INTRODUCTION

Many classic results on fusion in a Sylow subgroup S of a finite group G
can be interpreted as results about the fusion system F = FS(G). Burn-
side’s Fusion Theorem becomes FS(G) = FS(NG(S)) when S is abelian.
Alperin’s Fusion Theorem says that F is generated by certain “local” sub-
categories of F (cf. Theorem I.3.5). Goldschmidt’s Fusion Theorem says
that an abelian subgroup A of S is “normal” in F (cf. Definition I.4.1)
when no element of A is fused into S�A, and goes on to use this fact to
determine G.

Puig created his theory of Frobenius categories largely as a tool in mod-
ular representation theory, motivated in part by work of Alperin and Broue
in [AB]. Later, homotopy theorists used this theory to provide a formal set-
ting for, and prove results about, the p-completed classifying spaces of finite
groups. As part of this process, objects called p-local finite groups associ-
ated to abstract fusion systems were introduced by Broto, Levi and Oliver
in [BLO2]; these also possess interesting p-completed classifying spaces.
Finally, local finite group theorists became interested in fusion systems,
in part because methods from local group theory proved to be effective
in the study of fusion systems, but also because certain results in finite
group theory seem to be easier to prove in the category of saturated fusion
systems.

These three themes — the application of fusion systems in modular
representation theory, homotopy theory, and finite group theory — together
with work on the foundations of the theory of saturated fusion systems,
remain the focus of interest in the subject. And these are the four themes
to which this volume is devoted.

This book grew out of a workshop on fusion systems at the University
of Birmingham in July–August of 2007, sponsored by the London Math-
ematical Society and organized by Chris Parker. At that workshop there
were three series of talks, one each on the role of fusion systems in modular
representation theory, homotopy theory, and finite group theory, given by
Kessar, Oliver, and Aschbacher, respectively. It was Chris Parker’s idea to
use those talks as the point of departure for this book, although he unfor-
tunately had to pull out of the project before it was completed. We have
extracted material on the foundations of the theory of fusion systems from
the various series and collected them in Part I of the book, where we have
also included proofs of many of the most basic results. Then the talks have
been updated and incorporated in Parts II through IV of the book, which
describe the state of the art of the role of fusion systems in each of the
three areas.

David Craven has also written a book on fusion systems [Cr2], which
also can trace its origins to the 2007 workshop in Birmingham, and which
should appear at about the same time as this one. The two books are very
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FUSION SYSTEMS IN ALGEBRA AND TOPOLOGY 3

different in style — for example, his is intended more as a textbook and
ours as a survey — and also very different in the choice of topics. In this
way, we expect that the two books will complement each other.

The theory of fusion systems is an emerging area of mathematics. As
such, its foundations are not yet firmly established, and the frontiers of
the subject are receding more rapidly than those of more established areas.
With this in mind, we have two major goals for this volume: first, collect in
one place the various definitions, notation, terminology, and basic results
which constitute the foundation of the theory of fusion systems, but are
currently spread over a number of papers in the literature. In the process
we also seek to reconcile differences in notation, terminology, and even basic
concepts among papers in the literature. In particular, there is a discussion
of the three existing notions of a “normal subsystem” of a saturated fusion
system. Second, we seek to present a snapshot of the important theorems
and open problems in our four areas of emphasis at this point in time.
Our hope is that the book will serve both as a basic reference on fusion
systems and as an introduction to the field, particularly for students and
other young mathematicians.

The book is organized as follows. Part I contains foundational mate-
rial about fusion systems, including the most basic definitions, notation,
concepts, and lemmas. Then Parts II, III, and IV discuss the role of fu-
sion systems in local finite group theory, homotopy theory, and modular
representation theory, respectively. Finally the book closes with an appen-
dix which records some of the basic material on finite groups which is well
known to specialists, but perhaps not to those who approach fusion systems
from the point of view of representation theory or homotopy theory.

We have received help from a large number of people while working on
this project. In particular, we would like to thank Kasper Andersen, David
Craven, and Ellen Henke for reading large parts of the manuscript in detail
and making numerous suggestions and corrections. Many of the others who
have assisted us will be acknowledged in the introductions to the individual
Parts.

Notation: We close this introduction with a list of some of the basic
notation involving finite groups used in all four Parts of the book. Almost
all of this notation is fairly standard.

For x, g ∈ G, we write gx = gxg−1 for the conjugate of x under g, and
let cg : G→ G be conjugation by g, defined by cg(x) =

gx. Set xg = g−1xg
and for X ⊆ G, set gX = cg(X) and Xg = cg−1(X). Let NG(X) = {g ∈
G | gX = X} be the normalizer in G of X and CG(X) = {g ∈ G |xg =
gx for all g ∈ G} be the centralizer in G of X. Write 〈X〉 for the subgroup
of G generated by X.
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4 INTRODUCTION

Similar notation will be used when conjugating by an isomorphism of
(possibly distinct) groups. For example (when group homomorphisms are

composed from right to left), if ϕ : G
∼=−−−→ H is an isomorphism of groups,

and α ∈ Aut(G) and β ∈ Aut(H), we write ϕα = ϕαϕ−1 ∈ Aut(H) and
βϕ = ϕ−1βϕ ∈ Aut(G).

We write H ≤ G, H < G, or H � G to indicate that H is a sub-
group, proper subgroup, or normal subgroup of G, respectively. Observe,
for H ≤ G, that c : g �→ cg is a homomorphism from NG(H) into Aut(H)
with kernel CG(H); we write AutG(H) for the image c(NG(H)) of H
under this homomorphism. Thus AutG(H) is the automizer in G of H
and AutG(H) ∼= NG(H)/CG(H). The inner automorphism group of H is
Inn(H) = AutH(H) = c(H), and the outer automorphism group of H is
Out(H) = Aut(H)/Inn(H).

We write Sylp(G) for the set of Sylow p-subgroups of G. When π is a
set of primes, a π-subgroup of G is a subgroup whose order is divisible only
by primes in π. We write Oπ(G) for the largest normal π-subgroup of G,
and Oπ(G) for the smallest normal subgroup H of G such that G/H is
a π-group. We write p′ for the set of primes distinct from p; we will be
particularly interested in the groups Op(G), Op′(G), Op(G), and Op′

(G).
Sometimes we write O(G) for O2′(G).

As usual, when P is a p-group for some prime p, we set Ω1(P ) =
〈g ∈ P | gp = 1〉.

As for specific groups, Cn denotes a (multiplicative) cyclic group of or-
der n, and D2k , SD2k , Q2k denote dihedral, semidihedral, and quaternion
groups of order 2k. Also, An ≤ Sn denote alternating and symmetric
groups on n letters.

Throughout the book, p is always understood to be a fixed prime. All
p-groups are assumed to be finite.
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1. THE FUSION CATEGORY OF A FINITE GROUP 5

Part I. Introduction to fusion systems

This part is intended as a general introduction to the book, where we
describe the properties of fusion systems which will be used throughout.
We begin with the basic definitions of fusion systems of finite groups and
abstract fusion systems, and give some versions of Alperin’s fusion theorem
in this setting. Afterwards, we discuss various topics such as normal and
central subgroups of fusion systems, constrained fusion systems, normal fu-
sion subsystems, products of fusion systems, the normalizer and centralizer
fusion subsystems of a subgroup, and fusion subsystems of p-power index
or of index prime to p.

1. The fusion category of a finite group

For any group G and any pair of subgroups H,K ≤ G, we define

HomG(H,K) =
{
ϕ ∈ Hom(H,K)

∣∣
ϕ = cg for some g ∈ G such that gH ≤ K

}
.

In other words, HomG(H,K) is the set of all (injective) homomorphisms
from H to K which are induced by conjugation in G. Similarly, we write
IsoG(H,K) for the set of elements of HomG(H,K) which are isomorphisms
of groups.

Definition 1.1 Fix a finite group G, a prime p, and a Sylow p-subgroup
S ∈ Sylp(G). The fusion category of G over S is the category FS(G) whose
objects are the subgroups of S, and which has morphism sets

MorFS(G)(P,Q) = HomG(P,Q).

Many concepts and results in finite group theory can be stated in terms
of this category. We list some examples of this here. In all cases, G is a
finite group and S ∈ Sylp(G).

• Alperin’s fusion theorem [Al1], at least in some forms, is the state-
ment that FS(G) is generated by automorphism groups of certain
subgroups of S, in the sense that each morphism in FS(G) is a
composite of restrictions of automorphisms of those subgroups.

• Glauberman’s Z∗-theorem [Gl1] says that when p = 2 and O2′(G) =
1, then Z(G) = Z(FS(G)), where Z(FS(G)) is the “center” of
the fusion category in a sense which will be made precise later
(Definition 4.3).
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6 PART I: INTRODUCTION TO FUSION SYSTEMS

• A subgroup H ≤ G which contains S controls fusion in S if FS(H) =
FS(G). Thus Burnside’s fusion theorem states that when S is
abelian, FS(G) = FS(NG(S)), and that every morphism in FS(G)
extends to an automorphism of S.

• By a theorem of Frobenius (cf. [A4, 39.4]), G has a normal p-complement
(a subgroup H � G of p-power index and order prime to p) if and
only if FS(G) = FS(S).

• The focal subgroup theorem says that

S ∩ [G,G] = foc(FS(G))
def
=
〈
x−1y

∣∣x, y ∈ S, x = gy for some g ∈ G
〉
,

and is thus described in terms of the category FS(G). By the
hyperfocal subgroup theorem of Puig [P5, § 1.1], S∩Op(G) can also
be described in terms of the fusion category FS(G) (see Section 7).

The following lemma describes some of the properties of these fusion cat-
egories, properties which help to motivate the definition of abstract fusion
systems in the next section.

Lemma 1.2 Fix a finite group G and a Sylow p-subgroup S ∈ Sylp(G).

(a) For each P ≤ S, there is Q ≤ S such that Q is G-conjugate to P and
NS(Q) ∈ Sylp(NG(Q)). For any such Q, CS(Q) ∈ Sylp(CG(Q)) and
AutS(Q) ∈ Sylp(AutG(Q)).

(b) Fix P,Q ≤ S and g ∈ G such that gP = Q. Assume NS(Q) ∈
Sylp(NG(Q)). Set

N =
{
x ∈ NS(P )

∣∣ gx ∈ NS(Q)·CG(Q)
}
.

Then there is h ∈ CG(Q) such that hgN ≤ S.

Proof. (a) Fix T ∈ Sylp(NG(P )). Since T is a p-subgroup of G, there
is g ∈ G such that gT ≤ S. Set Q = gP . Then Q � gT ≤ S, and
gT ∈ Sylp(NG(Q)) since cg ∈ Aut(G). Also, gT ≤ NS(Q), and since gT ∈
Sylp(NG(Q)), gT = NS(Q). The last statement now holds by Lemma A.3,
upon identifying AutX(Q) with NX(Q)/CX(Q) for X = G,S.

(b) Since NS(Q) normalizes CG(Q), NS(Q)·CG(Q) is a subgroup of G.
By assumption, gN ≤ NS(Q)·CG(Q). Since NS(Q) ∈ Sylp(NG(Q)) and
NS(Q)·CG(Q) ≤ NG(Q), NS(Q) is also a Sylow subgroup of NS(Q)·CG(Q).
Hence there is h ∈ CG(Q) such that h(gN) ≤ NS(Q); i.e., hgN ≤ NS(Q). �
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2. ABSTRACT FUSION SYSTEMS 7

2. Abstract fusion systems

The notion of an abstract fusion system is due to Puig. The definitions
we give here are modified versions of Puig’s definitions (given in [P6]), but
equivalent to them. The following is what he calls a “divisible S-category”.

Definition 2.1 ([P6], [BLO2]) A fusion system over a p-group S is a
category F , where Ob(F) is the set of all subgroups of S, and which satisfies
the following two properties for all P,Q ≤ S:

• HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q); and

• each ϕ ∈ MorF (P,Q) is the composite of an F-isomorphism followed by
an inclusion.

Composition in a fusion system F is always given by composition of ho-
momorphisms. We usually write HomF (P,Q) = MorF (P,Q) to emphasize
that the morphisms in F actually are group homomorphisms, and also set
AutF (P ) = HomF (P, P ). Note that a fusion system over F contains all

inclusions inclQP , for P ≤ Q ≤ S, by the first condition (it is conjugation
by 1 ∈ S). The second condition means that for each ϕ ∈ HomF (P,Q),
ϕ : P −−−→ ϕ(P ) and ϕ−1 : ϕ(P ) −−−→ P are both morphisms in F .

Fusion systems as defined above are too general for most purposes, and
additional conditions are needed for them to be very useful. This leads to
the concept of what we call a “saturated fusion system”: a fusion system
satisfying certain axioms which are motivated by properties of fusion in
finite groups. The following version of these axioms is due to Roberts and
Shpectorov [RS].

Definition 2.2 Let F be a fusion system over a p-group S.

• Two subgroups P,Q ≤ S are F-conjugate if they are isomorphic as
objects of the category F . Let PF denote the set of all subgroups
of S which are F-conjugate to P .

• A subgroup P ≤ S is fully automized in F if AutS(P ) ∈ Sylp(AutF (P )).

• A subgroup P ≤ S is receptive in F if it has the following property: for
each Q ≤ S and each ϕ ∈ IsoF (Q,P ), if we set

Nϕ = NF
ϕ = {g ∈ NS(Q) | ϕcg ∈ AutS(P )},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|Q = ϕ.

• A fusion system F over a p-group S is saturated if each subgroup of S is
F-conjugate to a subgroup which is fully automized and receptive.
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8 PART I: INTRODUCTION TO FUSION SYSTEMS

We also say that two elements x, y ∈ S are F-conjugate if there is an
isomorphism ϕ ∈ IsoF (〈x〉, 〈y〉) such that ϕ(x) = y, and let xF denote the
F-conjugacy class of x.

The fusion category FS(G) of a finite group G clearly satisfies the con-
ditions in Definition 2.1, and thus is a fusion system. It also satisfies the
saturation conditions by Lemma 1.2.

Theorem 2.3 (Puig) If G is a finite group and S ∈ Sylp(G), then FS(G)
is a saturated fusion system.

Proof. By Lemma 1.2(a), each subgroup P ≤ S is G-conjugate to a sub-
group Q ≤ S such that NS(Q) ∈ Sylp(NG(Q)), and each such subgroup
Q is fully automized in FS(G). By Lemma 1.2(b), Q is also receptive in
FS(G), and thus FS(G) is saturated. �

A saturated fusion system F over a p-group S will be called realizable if
F = FS(G) for some finite group G with S ∈ Sylp(G), and will be called
exotic otherwise. Examples of exotic fusion systems will be described in
Section III.6.

There are several, equivalent definitions of saturated fusion systems in
the literature. We discuss here the definition of saturation which was given
in [BLO2]. Two other definitions, the original one given by Puig and an-
other one by Stancu, will be described and shown to be equivalent to these
in Section 9 (Proposition 9.3).

In order to explain the definition in [BLO2], and compare it with the
one given above, we first need to define two more concepts.

Definition 2.4 Let F be a fusion system over a p-group S.

• A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(Q)| for all
Q ∈ PF .

• A subgroup P ≤ S is fully normalized in F if |NS(P )| ≥ |NS(Q)| for
all Q ∈ PF .

For example, when F = FS(G) for some finite group G and some S ∈
Sylp(G), then by Lemma 1.2(a), a subgroup P ≤ S is fully normalized
(centralized) in FS(G) if and only if NS(P ) ∈ Sylp(NG(P )) (CS(P ) ∈
Sylp(CG(P ))).

Definition 2.4 is different from the definition of “fully normalized” and
“fully centralized” in [P6, 2.6], but it is equivalent to Puig’s definition when
working in saturated fusion systems. This will be discussed in much more
detail in Section 9.
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2. ABSTRACT FUSION SYSTEMS 9

The following equivalent condition for a fusion system to be saturated,
stated in terms of fully normalized and fully centralized subgroups, was
given as the definition of saturation in [BLO2, Definition 1.2].

Proposition 2.5 ([RS, Theorem 5.2]) Let F be a fusion system over a
p-group S. Then F is saturated if and only if the following two conditions
hold.

(I) (Sylow axiom) Each subgroup P ≤ S which is fully normalized in F
is also fully centralized and fully automized in F .

(II) (Extension axiom) Each subgroup P ≤ S which is fully centralized
in F is also receptive in F .

Proposition 2.5 is an immediate consequence of the following lemma.

Lemma 2.6 ([RS]) The following hold for any fusion system F over a
p-group S.

(a) Every receptive subgroup of S is fully centralized.

(b) Every subgroup of S which is fully automized and receptive is fully
normalized.

(c) Assume P ≤ S is fully automized and receptive. Then for each Q ∈
PF , there is a morphism ϕ ∈ HomF (NS(Q), NS(P )) such that ϕ(Q) =
P . Furthermore, Q is fully centralized if and only if it is receptive, and
is fully normalized if and only if it is fully automized and receptive.

Proof. (a) Assume P ≤ S is receptive. Fix any Q ∈ PF and any ϕ ∈
IsoF (Q,P ). Since P is receptive, ϕ extends to some ϕ ∈ HomF (Nϕ, S),
where Nϕ contains CS(Q) by definition. Thus ϕ sends CS(Q) injectively
into CS(P ), and so |CS(P )| ≥ |CS(Q)|. Since this holds for all Q ∈ PF , P
is fully centralized in F .

(b) Now assume P is fully automized and receptive, and fix Q ∈ PF . Then
|CS(Q)| ≤ |CS(P )| by (a), and |AutS(Q)| ≤ |AutS(P )| since AutF (Q) ∼=
AutF (P ) and AutS(P ) ∈ Sylp(AutF (P )). Thus

|NS(Q)| = |CS(Q)|·|AutS(Q)| ≤ |CS(P )|·|AutS(P )| = |NS(P )|.

Since this holds for all Q ∈ PF , P is fully normalized in F .

(c) Assume P is fully automized and receptive, and fix Q ∈ PF . Choose
ψ ∈ IsoF (Q,P ). Then ψAutS(Q) is a p-subgroup of AutF (P ), and hence is
AutF (P )-conjugate to a subgroup of AutS(P ) since P is fully automized.
Fix α ∈ AutF (P ) such that αψAutS(Q) is contained in AutS(P ). Then
Nαψ = NS(Q) (see Definition 2.2), and so αψ extends to some homomor-
phism ϕ ∈ HomF (NS(Q), S). Since ϕ(Q) = αψ(Q) = P , Im(ϕ) ≤ NS(P ).
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10 PART I: INTRODUCTION TO FUSION SYSTEMS

If Q is fully centralized, then ϕ(CS(Q)) = CS(P ). Fix R ≤ S and β ∈
IsoF (R,Q). For g ∈ Nβ ,

βcg ∈ AutS(Q) implies αψβcg ∈ AutS(P ) since αψ
extends to a homomorphism defined on NS(Q), and thus g ∈ Nαψβ . Since
P is receptive, αψβ extends to a homomorphism χ ∈ HomF (Nβ , NS(P )).
For each g ∈ Nβ ,

βcg = ch for some h ∈ NS(Q) by definition of Nβ ,
so cϕ(h) = ϕch = cχ(g), and thus χ(g) ∈ Im(ϕ)·CS(P ) = Im(ϕ). Thus

Im(χ) ≤ Im(ϕ), so χ factors through some β ∈ HomF (Nβ , NS(Q)) with

β|R = β, and this proves that Q is receptive.

If Q is fully normalized, then ϕ is an isomorphism. Hence ϕ sends
CS(Q) onto CS(P ), so Q is fully centralized and hence receptive. Also,
AutS(Q) ∼= NS(Q)/CS(Q) is isomorphic to AutS(P ) ∼= NS(P )/CS(P ),
and AutF (Q) ∼= AutF (P ) since Q ∈ PF . So AutS(Q) ∈ Sylp(AutF (Q))
since AutS(P ) ∈ Sylp(AutF (P )), and Q is fully automized. �

We end this section with an example, which describes how to list all
possible saturated fusion systems over one very small 2-group.

Example 2.7 Assume S ∼= D8: the dihedral group of order 8. Fix
generators a, b ∈ S, where |a| = 4, |b| = 2, and |ab| = 2. Set T0 = 〈a2, b〉
and T1 = 〈a2, ab〉: these are the only subgroups of S isomorphic to C2×C2.
Then the following hold for any saturated fusion system F over S.

(a) Since S is fully automized and Aut(S) is a 2-group, AutF (S) = Inn(S).

(b) If P = 〈a〉 and Q = P or S, then HomF (P,Q) = HomS(P,Q) =
Hom(P,Q).

(c) The subgroups T0 and T1 are both fully normalized in F , and hence are
fully automized and receptive. So if T1 ∈ TF

0 , then by Lemma 2.6(c),
there is α ∈ AutF (S) such that α(T0) = T1. Since this contradicts
(a), T0 and T1 cannot be F-conjugate.

(d) Set P = 〈a2〉, and let Q ≤ S be any subgroup of order 2. Since P � S,
P is fully normalized in F and hence fully automized and receptive.
So if Q ∈ PF (and Q �= P ), then by Lemma 2.6(c) again, there is
some ϕ ∈ HomF (Ti, S), where Ti = NS(Q) (i = 0 or 1), such that
ϕ(Q) = P . Also, ϕ(Ti) = Ti by (c).

(e) By (a–d), F is completely determined by AutF (T0) and AutF (T1).
Also, for each i, AutS(Ti) ≤ AutF (Ti) ≤ Aut(Ti), and hence AutF (Ti)
has order 2 or 6.

Thus there are at most four saturated fusion systems over S. De-
note these fusion systems Fij , where i = 0 if |AutF (T0)| = 2, i = 1 if
|AutF (T0)| = 6, and similarly j = 0, 1 depending on |AutF (T1)|. Then
F00 is the fusion system of S ∼= D8 itself, F01

∼= F10 are isomorphic to the
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