Cambridge University Press

978-1-107-58628-4 - Pratical Physics: A Collection of Experiments for Upper Forms
of Schools & Colleges together with the Relevant Theory

Sir Cyril Ashford

Excerpt

More information

INTRODUCTION
THE REDUCTION OF OBSERVATIONS

Not the least important part of a laboratory experiment is the
utilisation of the observations made in the course of that experi-
ment. The object of the experiment may be to measure some
physical or instrumental constant, such as g or the focal length of a
lens, or to find out how two or more variable quantities are related
to one another, such as the volume, pressure and temperature of a
constant mass of gas, or it may be a combination of the two purposes.
We may have observed as accurately as we can the value of one of
these variables corresponding to an observed value of another, and
may have done so for several different values of the latter; the pro-
blem remains, how to use these pairs of measurements so as to deduce
from them the algebraical relation between them.

The first part of this problem is to discover the form of this rela-
tion; the two columns of figures representing the crude results of
our measurements, the ‘pointer-readings’ as Eddington called them,
are often very unpromising material for this process. For instance,
after the wave-lengths of the bright lines in the spectrum of hydrogen
had been measured it needed a lot of co-operative effort before any
mathematical law connecting them could be discovered; again, the
positions of one or two planets at various known times had been
fairly accurately measured for many years before Kepler could dis-
cover his three general, comparatively simple, laws governing the
motion of all planets, from which Newton could deduce his supremely
simple law of Universal Gravitation. These are instances of the
application of genius to great problems; it may be a descent from
the sublime to the ridiculous to point out that in Exp. 22 and again
in Exps. 28, 29 and 30 problems of the same nature are set for your
solution, but very humble illustrations may be the most illuminating.

The second part of the problem is to discover whether the law
thus formulated is obeyed with complete precision throughout the
whole range of the variables which, mathematically, it purports to
cover. For instance, it was long thought to be established that light
travelled to us from the stars in geometrically straight lines, but
extremely precise measurements (undertaken because Einstein’s
work on relativity suggested that it might not be true in all circum-
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2 INTRODUCTION

stances) showed that a ray of light passing near the sun is deflected,
very slightly but measurably, by the mass of the sun. Making again
the descent from the sublime to the ridiculous, we shall presently
have occasion to consider the way in which a spiral steel spring fails
in practice to obey Hooke’s law.

There is therefore scope for great ingenuity in reducing tables of
observations to a form that will be helpful in each of the foregoing
processes. For the first, there is clearly need for more than ingenuity;
scientific imagination or intuition of the highest order may be re-
quired to suggest the form of the relation. But when it is merely a
question of testing the truth or applicability of the relation, of ‘veri-
fying’ it, a more lowly intelligence may suffice, and it may become
merely a matter of choosing the most suitable out of a number of
well-recognised manipulations of the crude results of the observa-
tions. For example, the mere addition or subtraction of a suitable
constant in each case (as in Exp. 22 mentioned above) may make it
easy to see the next step in evolving the required law; or it may be
useful to take the reciprocal, or the logarithm, of each, and so on.

For this reason the following notes on some of the recognised
methods of reduction and presentation may be found helpful.

1. Computation of a Single Constant

(a) Laboratory work often consists of determining, as accurately
as we can, the value of a single physical or instrumental constant,
assuming the truth of a relation established by theoretical reasoning.
For example, we may have to determine the most probable value of
the instrumental constant f of a particular lens, accepting the truth
of the general lens formula 1/u + 1/v = 1]}, or we may have to find
by experiments on a simple pendulum the value of the physical con-
stant g, accepting the truth of the theoretical relation T'=2m/(I[g).

Taking the former example, we set up the apparatus and measure,
for one setting of the object, the values of # and v. We substitute
these values in the general relation and compute the value of f. If
we repeat this operation with a different setting of the object it is
almost a certainty that we shall obtain a different value of f; suppose
we do this N times in all, we are left with IV different values of f,
and are faced with the problem of deducing from them a value which
is most likely to be the true value of f. Denote this true value by F,
and the various calculated values by f;, f, fs, etc. Then the error of
the first determination was f; —F, of the second was f,—F, and so
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SINGLE CONSTANT 3

on, and the sum-total of all the errors was XZf; —NF, where Zf;
means the sum of all terms like f;.

Suppose that it is equally probable that any one of the calculated
values is correct, and that their number N is infinitely large; then
the Theory of Probability shows that for every one that is too large
by a certain amount we can find one that is too small by exactly the
same amount, and the arithmetic mean of these two will be exactly
equal to F, and the sum-total of their errors is zero. Repeating this
for all the observations, we see that Xf;—NF must be zero, or
F =Zf)|N, or F, the true value, is the arithmetic mean of all the
calculated values.

We cannot, of course, take an infinite number of observations,
but reasons are given in §4 for taking the arithmetic mean of such
calculated values as are available as the most probable value
of F.

It may happen that one, or more, of these observations leads to a
value outstandingly different from the average value; it is tempting
to ignore it out of hand as incorrect. It is clearly sound policy to go
back and repeat this observation with great care, to find out whether
there has been an error of observation or calculation. If there was,
we can obviously ignore the original observation and substitute
the revised one; if not, it is on the whole the soundest policy to
retain it.

(b) This process of computing the arithmetic mean is in many
cases quicker than a graphical method of determining the constant;
it can be carried to a higher degree of numerical accuracy, and it has
the additional merit of leading to a numerical estimate of the degree
to which our experiments are trustworthy.

Take, for instance, the numbers in the first and second columns
of this table, which are the reciprocals of the values of # and v
found in the course of Exp. 25 (B) with a concave lens:

_ _ Difference

1u 1fo tf f from mean
0'0I117 007681 0'06564 15°23 0'00
0°01447 0'07987 006540 15'29 +0-06
0°02086 008681 o'06605 15°14 —0'09
0'02574 009076 0'06504 1537 +o'14
0°02995 009506 006611 15°13 —0°'10
0°03402 0'09982 006580 15°20 —o0°03
6|91°36 6(0°42
15'23 o007

1-2

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9781107586284
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-58628-4 - Pratical Physics: A Collection of Experiments for Upper Forms
of Schools & Colleges together with the Relevant Theory

Sir Cyril Ashford

Excerpt

More information

4 INTRODUCTION

The third column shows the difference between the first and
second, which in accordance with the accepted theory is —1/f; the
fourth shows —f (taken from a table of reciprocals) and the way it
leads to the arithmetic mean value for f of 15-23. This is the best
value of f which we can get from our observations.

We can consider the fifth column as giving the ‘error’ of each
observation; if we take the arithmetic mean of these numbers, dis-
regarding their signs (as shown), we can consider the result, 0-07,
as representing the mean error. It is customary to express these
results in the form f= —15-23 + 0-07.

Since 0-07 is about } %, of the value of f, it is often said that these
experiments are ‘accurate to 39%,’. This shorthand statement is
convenient for purposes of comparison but liable to mislead unless
we bear in mind what it really means; for instance, one of these
experiments shows an error of almost 1 %, of the arithmetic mean of
the values we have obtained for f.

2. Graphical Representation; Linear Graphs

Laboratory work usually involves more complex problems than
those dealt with in § 1, where we assumed that the relation between
the measured variables was known; the problem is often to deter-
mine by experiment what the relation is. Let us assume for the
present that our measurements are absolutely accurate; we can after-
wards consider how best to allow for observational errors.

Suppose that we plot in the usual way the points represented by
the pairs of observations, using such scales along the two axes as
will spread the points satisfactorily on the graph paper. Suppose
that we find that these points lie on a straight line; the relation
between the observed quantities is clearly linear, of the form
ax+by=1, where x and y are the quantities and @ and b are some
constants.

If this graph is not a straight line, let us suppose that by some
manipulation of the observed quantities (e.g. squaring one or both
or taking logs of one or both), and plotting these manipulated quan-
tities we can get a straight-line graph. Then, again, the form of the
relation is discovered.

Further, a and b are at once measurable since the intercept on the
axis of x, found by putting y =0 in the equation ax+by=1 to be 1/a,
can be read off as the value of the intersection of the straight-line
graph and the axis of x in terms of the scale for that axis. Similarly,
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LINEAR GRAPHS 5

1/b can be found. But it is essential to be on one’s guard in carrying
out even this familiar procedure.

(@) Suppose that a closely coiled spiral steel spring is hung up and
loaded with a series of weights (W g.) ranging from o to 1300 g.,
and the corresponding overall lengths (I cm.) of the spring are
measured; the points representing / and W are plotted and the full-
line graph in Fig. 1 drawn. Let us assume that the graph between
A and B s, as it appears to be, a straight line.

l
cm, A
14

100300 700 500 500 000 1200 e
Fig. 1.

It is easy to account for the horizontal part of the graph, since,
let us suppose, the experimental set-up showed that at a load of
300 g. consecutive turns of the wire were in contact, and the spring
could not shorten further as the load was reduced.

Hence any linear algebraical relation connecting / and W which
we may find to be true for loads on this spring between 300 and
1300 g. may be true for greater loads, but it certainly cannot be true
for loads less than 300 g.
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6 INTRODUCTION

Nevertheless, any relation between the co-ordinates / and W
which holds good for a portion of a straight line must hold good
mathematically for the whole of it, produced to infinity both ways.
Hence in finding the algebraical relation which holds good physically
only for the part AB of the graph we may produce that part geo-
metrically to cut the axis of / at C (as shown by the dotted line) and
beyond C to cut the axis of W at D. Hence if the required relation

between [ and W is
al+bW=1,

since the intercept on the /-axis is 1/a, and we see by the graph
that the intercept is 4-80, we deduce at once that a=1/4-8o.

The value of the intercept OD on the axis of W cannot be read
off so immediately, but can be deduced from the graph as follows.

By similar triangles, OD/OC=NC|NP. Here we are assuming
that these are geometrical lengths on the graph paper, but the pro-
portion holds good if we replace OD and CN by the quantities of W
represented by those lengths, and OC and NP by the quantities of /
represented by those lengths. Hence, numerically,

oD 780 780

so that, since OD represents a negative value of W,

po L ___ 550
" OD  4:80x780

and the relation between [ and W is

l 5°50

4.W)=‘on—786W+l, or l=%W+4-80=o-00705W+4-80,

with the proviso that, so far as we know from our experiment, it
holds good only for values of W between 300 and 1300.

This is the simplest way of setting out a linear relation. But it is
sometimes convenient to write the above relation in the form

l=4-80(1 +0'001465W),

which is a particular case of the general form y=1y,(1 +ax), where
9, is the value of y when x=o0. The coefficient of ¥ (that is, 0-001465)
is then a constant for all springs of that particular kind, whatever
their length may be, and it would be reasonable to call this constant
the coefficient of elasticity of such springs.
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LINEAR GRAPHS 7

Note particularly that in this expression for /, y, is 480, or the
intercept of the straight line on the axis of / and not the intercept of
the physical graph on that axis, which is 6-60 and represents the
actual length of the spring when W=o0. We may, in fact, call y,,
the value of y when x=o, the ‘ideal unstretched length’, if the
relation y =yy(1+ ax) held good when x=o0 (which it does not).

This has been set down at, perhaps, tedious length, since con-
fusion can easily and often does arise on the point. Hooke’s law
holds good in this spring only when I is more than 300, and beyond
that point the extra extension produced by any additional load is
proportional to that additional load, but the total extension is never
proportional to the total load. However, the total length / of the
spring for any particular value of W can be read off the graph
directly, without reference to unstretched lengths and unloaded
springs; conversely, of course, the load on the spring can be deduced
directly from the graph when the total length / is known.

(b) Next, suppose that the periodic times (T' sec.) of simple
pendulums of various lengths (I cm.) have been measured, producing
the first two columns of this table:

! cm. T sec. T
60 1'55 2°40
8o 179 3°20

100 2°00 4'00
120 2°19 480

Plot the points corresponding to these values of / and 7, as (i)
in Fig. 2, and draw the best-fit smooth graph among them. This line
is so slightly curved that it would be almost excusable to regard it as
straight. If we deduce, as in the foregoing example, the relation
between T and ! we should find it to be

T=o0-01025/+093.

But the above values of / are badly chosen; they do not cover more
than a small fraction of the range that can easily be dealt with in the
experiment. If we take small values of /, such as 16 and g, we shall
get 0-80 and o-60 for 7, giving the plotted points P and Q. These
obviously do not fall on the straight line whose equation has been
found; that relation must, therefore, be wrong, and the true relation
cannot be linear, of the form T'=al+5.

If we draw a smooth curve through all these plotted points it is
not very illuminating; it is part of a curve which may well pass
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8 INTRODUCTION

through the origin, and it looks like a parabola, but that does not
enable us to determine at once the relation between / and T, as we
could do when the graph was linear.

But the theory of simple harmonic motion, or the practice of
Exp. 4, shows that the relation should be 72=4I, where 4 is a
constant; if then we plot / against 7" instead of 7', we should theo-
retically get a linear graph, passing through the origin. Filling in the

TorT?
5_

(#)

0 1 ! | ! | 1 1
10 20 40 60 80 100 120 ; o,

Fig. 2.

third column of the table and taking the squares of 0-8o and o-60 to
correspond with 16-0 and g-o for /, we get (ii) in Fig. 2. This may
be regarded as confirming the theory by being a straight line through
the origin; its slope to the l-axis can be read off the graph as 4 in
100, so the experimental relation is T%//=15g, or

T?=o0-04l.

This illustrates the advantages to be gained by manipulating one or
both of the measured quantities so that when plotted the corre-
sponding points will, or should, lie on a straight line. To know
what sort of manipulation is needed we must know the general form
of the relation; theory often furnishes us with this information, as
it did in the above instance. But a certain amount of intelligence is
often required in addition to theoretical knowledge, for no general
rules can be given by which we can dispense with that intelligence.
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LINEAR GRAPHS 9

(c) But a good many particular cases fall into one or other of a
few categories. Let us denote the experimentally measured quan-
tities by & and y, and unknown constants by a, b, ¢, etc. The above
case of a simple pendulum is a particular case of the general form
y*=ax+Db, n in that case being 2 and b being o. In the general case
we must plot y* against & to get the linear graph from which we
determine a and b. Other cases of the same class are given by Boyle’s
law and Newton’s lens formula, and the relation between frequency
and length in a monochord; here =0 and #= —1, so that we must
plot the reciprocal of y against x.

(@) Many problems in Optics, and some which are concerned with
resistances in parallel, involve the relation 1/x+ 1/y=const., and
this gives a linear graph if we plot the reciprocals of both x and y.

(e) Another group, including the temperature of a hot body losing
heat to its colder surroundings, the charge in a condenser losing its
charge through a resistance, and the speed of a body coming to rest
because of ‘frictional’ resistance proportional to the speed (as in a
damped ammeter), involve the relation y = y,e~9%, where x is the elapsed
time and y, is the value of y when x=o, and e=2-718.... Taking
logs of both sides we get logy=Ilogy,—axloge; since a, loge and
log y, are constants, we get a linear graph if we plot log y against x.

(f) Confusion sometimes arises between (A) Hooke’s law, Charles’s
law, etc., where the general relation is y=y,(1+ax), (B) thermal
expansions of solids and liquids, with the same general relation, and
(C) the group of cases just mentioned; it may be as well to clear up
the position to some extent.

(A) When the change in y may be considerable, as in the thermal
expansion of gases under constant pressure, y, and y, may differ
considerably from y,, and y, must therefore be precisely defined.

(B) When the change in y is small in comparison with y, as in the
thermal expansion of a solid or liquid, it makes little difference
whether we represent the expansion as y.a, y,a or y,a times the
change of temperature. This vagueness is harmful only if it leads to
the belief that the rate of change of length or volume of the body
with temperature is precisely proportional to that length or volume,
in which case it should, strictly speaking, come under the next
heading (C).

(C) Consider a condenser of capacity C farads, charged with a
quantity Q coulombs of electricity which raises the P.D. between the
plates to V" volts; let the plates be connected through a high resist-
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10 INTRODUCTION

ance R ohms, then the current (i amp.) through the resistance will
have a value of V/R or Q/CR, at any time (t) when the charge is Q.
Since the current equals the rate at which electricity passes through
the resistance, ¢ also equals the time-rate of decrease of Q. If then
we plot a graph connecting Q with ¢, the current at any time will
be measured by the slope of the tangent to the graph at the point
representing that time. Hence the graph must be of such a form
that the slope of the tangent at any point is directly proportional to
the ordinate of that point. Mathematics shows (see note to Exp. 16)
that in that case the relation between points on the curve must be
O =0y, where Q, is the value of Q when t=o0. From this relation
we can get a linear graph, as shown above, in (a).

(2) The experiments in this book furnish many examples of the
manipulation of the observed quantities to give linear graphs; it will
be seen that in a considerable proportion of them there comes a
stage when the results of theoretical reasoning are quoted, expressed
as an equation which has already been transformed mathematically
so as to be effectively linear (although it may contain powers of the
variables higher than the first, or logs of them, etc.). In effect, these
transformations may be regarded as part of the laboratory work and
not of the theory, which does not itself call for such transformations.

This equation is useful in the practical work in two ways: first,
because it may point to the way in which the observations must be
manipulated to produce a linear graph so that we may check the
form of the law, or the relation between the variables, by testing the
straightness of the experimental graph; secondly, because we can get
accurate numerical values of the two constants a and b in the equation
ax+by=1 representing that law, by measuring or calculating the
intercepts on the two axes. The theoretical equation gives the values
of a and b in terms of the magnitudes of various quantities in the
apparatus used in the experiment, which are unchanged throughout
that experiment, and we can check the theory in this respect by
substituting the measured values of these quantities in our experi-
ment in the theoretical expressions for a and b, and comparing the
results with our measured values of a and b.

3. Distorted Graphs

If we have measured in a laboratory several pairs of numerical
values of two connected physical quantities, each expressed in its
appropriate units, 4 and B say, and wish to represent the results
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