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NOTE

The Local Examinations Syndicate was fortunate in securing Sir
Cyril Ashford’s help and interest after his retirement from Dartmouth
in the preparation of practical physics exercises for the Higher School
Certificate Examination. Most of the problems in this book were set
in that examination between 1932 and 1947. They thus combine the
originality and interest which they owe to their author with the merit
of having been worked over by moderating examiners in the laboratory
and at meetings. In their present form they have also benefited from the
fact that the author was able to judge their suitability from the success-
ful and unsuccessful solutions sent in by many examination can-
didates, and from the comments of their teachers. The Syndicate
welcomes Sir Cyril Ashford’s re-use of these practical problems as
the basis of a teaching text-book which will make available in Schools
and Universities the results of the author’s pioneering efforts over
a period of 15 years.

J. L. BRERETON

SYNDICATE BUILDINGS
CAMBRIDGE

February 1949
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PREFACE

In the early stages of his science course a boy lacks reasoning power
and first-hand acquaintance with the properties and behaviour of
materials, so that he cannot fully comprehend a logically connected
course of lecture-demonstrations. During those stages, laboratory
work should therefore, so far as is practicable, go hand-in-hand with
the lectures. By the time the boy enters what is commonly called the
post-certificate stage the conditions have changed; he can then follow
lectures and demonstrations without having previously handled the
apparatus himself, and consciousness of the true relation between
theory and practice in an inductive science is beginning to dawn
on him. The need for individual experimentation is certainly not
lessened at this stage, but its main purpose becomes for the time being
the verification of theory which has been, or can be, developed by
deductive logic from earlier, more fundamental, experiments, and
the practical testing of hypotheses, sprung perhaps from his own,
perhaps from a more mature, scientific intuition.

The emphasis should now be laid on the best way of using his
available instrumental equipment to establish or reject a particular
theoretical result, and on the extent to which his experiments do
establish it. Laboratory technique and manipulative skill in general,
the setting up of apparatus and the precautions for accuracy of
observation in a particular case, and the reduction of those observa-
tions, all enter into this procedure. New powers of a general kind,
applicable to any particular problem, have to be developed, so that
there is no longer any strong reason for close relation between lecture
and laboratory work; indeed, laboratory work may almost be kept
in a separate compartment, to be developed concurrently with his
growing body of theoretical knowledge, whereby each may be ready
to come to the assistance of the other as need arises. Hence the
exercises forming a laboratory text-book for this stage need not have
any logical sequence and are therefore capable of being taken in
any order (which is a great convenience in a school laboratory with
its necessarily limited equipment), nor do they need to cover the
whole of the lecture course.

There is already available a considerable body of traditional ex-
periments designed to illustrate the lectures appropriate to this
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X PREFACE

stage; to propose new ones calls for justification. Many of those
included in this book, which is primarily designed for the last year
of the school course, are intentionally concerned with theory which
the schoolboy is unlikely to have studied, and the verification of
such theory by experiment is a procedure in line with the foregoing
arguments. In others the results to be tested can be deduced from
theoretical work with which he is more or less familiar, but the
general lay-out of the experiments and the methods of reducing the
observations in such a way as to check the theory effectively may be
unfamiliar to him. In every case the aim has been to present the
problem as one in Practical Physics, with the laboratory functioning
at least as the Court of Appeal rather than as a place where lectures
can be revised at leisure, and preferably as a real laboratory where a
boy can try out hypotheses and determine physical or instrumental
constants, free from authoritarian influences.

The outlines of relevant theory with which experiments are pre-
faced in many text-books are often worded in such a way as to
convey the impression that that theory settles the matter by its own
authority, and that the boy succeeds in his experiments only in so
far as his results agree with it; that he is to do the experiment for
the sake of practice in experimenting, and that it is his manipulative
skill, not the theory, which is being put to the test. It is in the
belief that this is to deny Physics its true status as an inductive
science that a vigorous attempt has been made here to banish any
such impression from the boy’s mind and to make him realise that
teachers and text-books alike ‘abide our question’.

Most of these exercises are based on questions set during the last
15 years in the Higher School Certificate papers of the Cambridge
University Local Examinations Syndicate, and grateful acknowledge-
ment is made to the Syndics for their permission to use them in
this form. The exercises have of course been radically transformed
and amplified to fit them to form part of a teaching course, and
care has been taken to increase rather than diminish the extent to
which their original design was influenced by the foregoing con-
siderations. The use of examination questions as a basis for a teach-
ing course has the merit that the problems set for solution in a
practical examination must be so designed that they can be carried
through in every one of a wide variety of laboratories, some at any
rate possessed of a very slender
sequence, all the experiments in
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PREFACE xi

exception, require no apparatus that does not already exist in every
laboratory where the book is likely to be used. This puts into effect
another general principle which the author believes to be of con-
siderable importance, that a student should learn to rely on his own
powers rather than on elaborate equipment; in C. V. Boys’s words,
not ‘to bow down to the brazen image that the instrument maker
has set up’, but to make the very best use of what is to hand, how-
ever simple it may be.

In some of these practical problems the boy cannot be expected
to know, to have been taught, or even to have access to books or
publications containing the relevant theory. Notes on this theory
have therefore been appended to individual exercises.

It is by no means essential, though it is desirable, for him to
master the substance of these notes; they may in some cases be too
advanced for him, but it will do him good to see how much of them
he can follow at the stage he has reached in his theoretical work, and
to realise that he can safely and properly explore by experiment
ground which is beyond his present range of theory. From that
point. of view there is really no need for him even to glance at these
notes, but they are at hand in case he is moved to do so. Their
presence may be rather intimidating to a student unless he under-
stands that this is their purpose, and that for him the actual experi-
ment is the all-important matter; it is hoped that this will be made
plain by the teacher and that he may not himself be misled into
overrating the difficulty of the course. The fact that most of the
experiments have been carried out under examination conditions by
hundreds of VIth Form boys, with a measure of success represented
by normal distribution curves, should dispose of such misappre-
hensions.

An Introduction has been provided in which a number of prac-
tical points in the reduction of observations is set forth. Teachers
usually prefer that their pupils should follow local customs in the
setting-up of apparatus and the choice of precautions for accuracy;
they would be unlikely to welcome outside interference in these
matters. On the other hand, the art of reducing observations may
almost be said to be one and indivisible; it would take too long for a
demonstrator to teach it separately to each pupil, but it is of such
practical importance that the demonstrator may well wish to be able
to refer the student to some treatise on the subject; such treatises are
not usually to be found in elementary text-books; it therefore seemed
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Xii PREFACE

desirable to attempt to meet the need here, even in this restricted
form. It will be seen that graphical methods, with emphasis on
linear equations, have been given the preponderance that is now
common in teaching laboratories.

In the Introduction, appendices and some of the notes on theory
a few unpublished pieces of theoretical work have been included;
the author can only express the hope that they will withstand
criticism and plead that he has at least offered his critics facilities for
testing their truth by designing experiments for that purpose, in
accordance with the principles set out in this preface.
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INTRODUCTION
THE REDUCTION OF OBSERVATIONS

Not the least important part of a laboratory experiment is the
utilisation of the observations made in the course of that experi-
ment. The object of the experiment may be to measure some
physical or instrumental constant, such as g or the focal length of a
lens, or to find out how two or more variable quantities are related
to one another, such as the volume, pressure and temperature of a
constant mass of gas, or it may be a combination of the two purposes.
We may have observed as accurately as we can the value of one of
these variables corresponding to an observed value of another, and
may have done so for several different values of the latter; the pro-
blem remains, how to use these pairs of measurements so as to deduce
from them the algebraical relation between them.

The first part of this problem is to discover the form of this rela-
tion; the two columns of figures representing the crude results of
our measurements, the ‘pointer-readings’ as Eddington called them,
are often very unpromising material for this process. For instance,
after the wave-lengths of the bright lines in the spectrum of hydrogen
had been measured it needed a lot of co-operative effort before any
mathematical law connecting them could be discovered; again, the
positions of one or two planets at various known times had been
fairly accurately measured for many years before Kepler could dis-
cover his three general, comparatively simple, laws governing the
motion of all planets, from which Newton could deduce his supremely
simple law of Universal Gravitation. These are instances of the
application of genius to great problems; it may be a descent from
the sublime to the ridiculous to point out that in Exp. 22 and again
in Exps. 28, 29 and 30 problems of the same nature are set for your
solution, but very humble illustrations may be the most illuminating.

The second part of the problem is to discover whether the law
thus formulated is obeyed with complete precision throughout the
whole range of the variables which, mathematically, it purports to
cover. For instance, it was long thought to be established that light
travelled to us from the stars in geometrically straight lines, but
extremely precise measurements (undertaken because Einstein’s
work on relativity suggested that it might not be true in all circum-

APP I
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2 INTRODUCTION

stances) showed that a ray of light passing near the sun is deflected,
very slightly but measurably, by the mass of the sun. Making again
the descent from the sublime to the ridiculous, we shall presently
have occasion to consider the way in which a spiral steel spring fails
in practice to obey Hooke’s law.

There is therefore scope for great ingenuity in reducing tables of
observations to a form that will be helpful in each of the foregoing
processes. For the first, there is clearly need for more than ingenuity;
scientific imagination or intuition of the highest order may be re-
quired to suggest the form of the relation. But when it is merely a
question of testing the truth or applicability of the relation, of ‘veri-
fying’ it, a more lowly intelligence may suffice, and it may become
merely a matter of choosing the most suitable out of a number of
well-recognised manipulations of the crude results of the observa-
tions. For example, the mere addition or subtraction of a suitable
constant in each case (as in Exp. 22 mentioned above) may make it
easy to see the next step in evolving the required law; or it may be
useful to take the reciprocal, or the logarithm, of each, and so on.

For this reason the following notes on some of the recognised
methods of reduction and presentation may be found helpful.

1. Computation of a Single Constant

(a) Laboratory work often consists of determining, as accurately
as we can, the value of a single physical or instrumental constant,
assuming the truth of a relation established by theoretical reasoning.
For example, we may have to determine the most probable value of
the instrumental constant f of a particular lens, accepting the truth
of the general lens formula 1/u + 1/v = 1]}, or we may have to find
by experiments on a simple pendulum the value of the physical con-
stant g, accepting the truth of the theoretical relation T'=2m/(I[g).

Taking the former example, we set up the apparatus and measure,
for one setting of the object, the values of # and v. We substitute
these values in the general relation and compute the value of f. If
we repeat this operation with a different setting of the object it is
almost a certainty that we shall obtain a different value of f; suppose
we do this N times in all, we are left with IV different values of f,
and are faced with the problem of deducing from them a value which
is most likely to be the true value of f. Denote this true value by F,
and the various calculated values by f;, f, fs, etc. Then the error of
the first determination was f; —F, of the second was f,—F, and so
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SINGLE CONSTANT 3

on, and the sum-total of all the errors was XZf; —NF, where Zf;
means the sum of all terms like f;.

Suppose that it is equally probable that any one of the calculated
values is correct, and that their number N is infinitely large; then
the Theory of Probability shows that for every one that is too large
by a certain amount we can find one that is too small by exactly the
same amount, and the arithmetic mean of these two will be exactly
equal to F, and the sum-total of their errors is zero. Repeating this
for all the observations, we see that Xf;—NF must be zero, or
F =Zf)|N, or F, the true value, is the arithmetic mean of all the
calculated values.

We cannot, of course, take an infinite number of observations,
but reasons are given in §4 for taking the arithmetic mean of such
calculated values as are available as the most probable value
of F.

It may happen that one, or more, of these observations leads to a
value outstandingly different from the average value; it is tempting
to ignore it out of hand as incorrect. It is clearly sound policy to go
back and repeat this observation with great care, to find out whether
there has been an error of observation or calculation. If there was,
we can obviously ignore the original observation and substitute
the revised one; if not, it is on the whole the soundest policy to
retain it.

(b) This process of computing the arithmetic mean is in many
cases quicker than a graphical method of determining the constant;
it can be carried to a higher degree of numerical accuracy, and it has
the additional merit of leading to a numerical estimate of the degree
to which our experiments are trustworthy.

Take, for instance, the numbers in the first and second columns
of this table, which are the reciprocals of the values of # and v
found in the course of Exp. 25 (B) with a concave lens:

_ _ Difference

1u 1fo tf f from mean
0'0I117 007681 0'06564 15°23 0'00
0°01447 0'07987 006540 15'29 +0-06
0°02086 008681 o'06605 15°14 —0'09
0'02574 009076 0'06504 1537 +o'14
0°02995 009506 006611 15°13 —0°'10
0°03402 0'09982 006580 15°20 —o0°03
6|91°36 6(0°42
15'23 o007

1-2
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4 INTRODUCTION

The third column shows the difference between the first and
second, which in accordance with the accepted theory is —1/f; the
fourth shows —f (taken from a table of reciprocals) and the way it
leads to the arithmetic mean value for f of 15-23. This is the best
value of f which we can get from our observations.

We can consider the fifth column as giving the ‘error’ of each
observation; if we take the arithmetic mean of these numbers, dis-
regarding their signs (as shown), we can consider the result, 0-07,
as representing the mean error. It is customary to express these
results in the form f= —15-23 + 0-07.

Since 0-07 is about } %, of the value of f, it is often said that these
experiments are ‘accurate to 39%,’. This shorthand statement is
convenient for purposes of comparison but liable to mislead unless
we bear in mind what it really means; for instance, one of these
experiments shows an error of almost 1 %, of the arithmetic mean of
the values we have obtained for f.

2. Graphical Representation; Linear Graphs

Laboratory work usually involves more complex problems than
those dealt with in § 1, where we assumed that the relation between
the measured variables was known; the problem is often to deter-
mine by experiment what the relation is. Let us assume for the
present that our measurements are absolutely accurate; we can after-
wards consider how best to allow for observational errors.

Suppose that we plot in the usual way the points represented by
the pairs of observations, using such scales along the two axes as
will spread the points satisfactorily on the graph paper. Suppose
that we find that these points lie on a straight line; the relation
between the observed quantities is clearly linear, of the form
ax+by=1, where x and y are the quantities and @ and b are some
constants.

If this graph is not a straight line, let us suppose that by some
manipulation of the observed quantities (e.g. squaring one or both
or taking logs of one or both), and plotting these manipulated quan-
tities we can get a straight-line graph. Then, again, the form of the
relation is discovered.

Further, a and b are at once measurable since the intercept on the
axis of x, found by putting y =0 in the equation ax+by=1 to be 1/a,
can be read off as the value of the intersection of the straight-line
graph and the axis of x in terms of the scale for that axis. Similarly,
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LINEAR GRAPHS 5

1/b can be found. But it is essential to be on one’s guard in carrying
out even this familiar procedure.

(@) Suppose that a closely coiled spiral steel spring is hung up and
loaded with a series of weights (W g.) ranging from o to 1300 g.,
and the corresponding overall lengths (I cm.) of the spring are
measured; the points representing / and W are plotted and the full-
line graph in Fig. 1 drawn. Let us assume that the graph between
A and B s, as it appears to be, a straight line.

chn. 4

14

100300 700 500 500 000 1200 e
Fig. 1.

It is easy to account for the horizontal part of the graph, since,
let us suppose, the experimental set-up showed that at a load of
300 g. consecutive turns of the wire were in contact, and the spring
could not shorten further as the load was reduced.

Hence any linear algebraical relation connecting / and W which
we may find to be true for loads on this spring between 300 and
1300 g. may be true for greater loads, but it certainly cannot be true
for loads less than 300 g.
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6 INTRODUCTION

Nevertheless, any relation between the co-ordinates / and W
which holds good for a portion of a straight line must hold good
mathematically for the whole of it, produced to infinity both ways.
Hence in finding the algebraical relation which holds good physically
only for the part AB of the graph we may produce that part geo-
metrically to cut the axis of / at C (as shown by the dotted line) and
beyond C to cut the axis of W at D. Hence if the required relation

between [ and W is
al+bW=1,

since the intercept on the /-axis is 1/a, and we see by the graph
that the intercept is 4-80, we deduce at once that a=1/4-8o.

The value of the intercept OD on the axis of W cannot be read
off so immediately, but can be deduced from the graph as follows.

By similar triangles, OD/OC=NC|NP. Here we are assuming
that these are geometrical lengths on the graph paper, but the pro-
portion holds good if we replace OD and CN by the quantities of W
represented by those lengths, and OC and NP by the quantities of /
represented by those lengths. Hence, numerically,

oD 780 780

so that, since OD represents a negative value of W,

po L ___ 550
" OD  4:80x780

and the relation between [ and W is

l 5°50

Ezmn”_l’ or l=%W+4-80=o-00705W+4-80,

with the proviso that, so far as we know from our experiment, it
holds good only for values of W between 300 and 1300.

This is the simplest way of setting out a linear relation. But it is
sometimes convenient to write the above relation in the form

l=4-80(1 +0'001465W),

which is a particular case of the general form y=1y,(1 +ax), where
9, is the value of y when x=o0. The coefficient of ¥ (that is, 0-001465)
is then a constant for all springs of that particular kind, whatever
their length may be, and it would be reasonable to call this constant
the coefficient of elasticity of such springs.
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LINEAR GRAPHS 7

Note particularly that in this expression for /, y, is 480, or the
intercept of the straight line on the axis of / and not the intercept of
the physical graph on that axis, which is 6-60 and represents the
actual length of the spring when W=o0. We may, in fact, call y,,
the value of y when x=o, the ‘ideal unstretched length’, if the
relation y =yy(1+ ax) held good when x=o0 (which it does not).

This has been set down at, perhaps, tedious length, since con-
fusion can easily and often does arise on the point. Hooke’s law
holds good in this spring only when I is more than 300, and beyond
that point the extra extension produced by any additional load is
proportional to that additional load, but the total extension is never
proportional to the total load. However, the total length / of the
spring for any particular value of W can be read off the graph
directly, without reference to unstretched lengths and unloaded
springs; conversely, of course, the load on the spring can be deduced
directly from the graph when the total length / is known.

(b) Next, suppose that the periodic times (T' sec.) of simple
pendulums of various lengths (I cm.) have been measured, producing
the first two columns of this table:

! cm. T sec. T
60 1'55 2°40
8o 179 3°20

100 2°00 4'00
120 2°19 480

Plot the points corresponding to these values of / and 7, as (i)
in Fig. 2, and draw the best-fit smooth graph among them. This line
is so slightly curved that it would be almost excusable to regard it as
straight. If we deduce, as in the foregoing example, the relation
between T and ! we should find it to be

T=o0-01025/+093.

But the above values of / are badly chosen; they do not cover more
than a small fraction of the range that can easily be dealt with in the
experiment. If we take small values of /, such as 16 and g, we shall
get 0-80 and o-60 for 7, giving the plotted points P and Q. These
obviously do not fall on the straight line whose equation has been
found; that relation must, therefore, be wrong, and the true relation
cannot be linear, of the form T'=al+5.

If we draw a smooth curve through all these plotted points it is
not very illuminating; it is part of a curve which may well pass
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8 INTRODUCTION

through the origin, and it looks like a parabola, but that does not
enable us to determine at once the relation between / and T, as we
could do when the graph was linear.

But the theory of simple harmonic motion, or the practice of
Exp. 4, shows that the relation should be 72=4I, where 4 is a
constant; if then we plot / against 7" instead of 7', we should theo-
retically get a linear graph, passing through the origin. Filling in the

TorT?
5_

(#)

0 1 ! | ! | 1 1
10 20 40 60 80 100 120 ; o,

Fig. 2.

third column of the table and taking the squares of 0-8o and o-60 to
correspond with 16-0 and g-o for /, we get (ii) in Fig. 2. This may
be regarded as confirming the theory by being a straight line through
the origin; its slope to the l-axis can be read off the graph as 4 in
100, so the experimental relation is T%//=15g, or

T?=o0-04l.

This illustrates the advantages to be gained by manipulating one or
both of the measured quantities so that when plotted the corre-
sponding points will, or should, lie on a straight line. To know
what sort of manipulation is needed we must know the general form
of the relation; theory often furnishes us with this information, as
it did in the above instance. But a certain amount of intelligence is
often required in addition to theoretical knowledge, for no general
rules can be given by which we can dispense with that intelligence.
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LINEAR GRAPHS 9

(c) But a good many particular cases fall into one or other of a
few categories. Let us denote the experimentally measured quan-
tities by & and y, and unknown constants by a, b, ¢, etc. The above
case of a simple pendulum is a particular case of the general form
y*=ax+Db, n in that case being 2 and b being o. In the general case
we must plot y* against & to get the linear graph from which we
determine a and b. Other cases of the same class are given by Boyle’s
law and Newton’s lens formula, and the relation between frequency
and length in a monochord; here =0 and #= —1, so that we must
plot the reciprocal of y against x.

(@) Many problems in Optics, and some which are concerned with
resistances in parallel, involve the relation 1/x+ 1/y=const., and
this gives a linear graph if we plot the reciprocals of both x and y.

(e) Another group, including the temperature of a hot body losing
heat to its colder surroundings, the charge in a condenser losing its
charge through a resistance, and the speed of a body coming to rest
because of ‘frictional’ resistance proportional to the speed (as in a
damped ammeter), involve the relation y = y,e~9%, where x is the elapsed
time and y, is the value of y when x=o, and e=2-718.... Taking
logs of both sides we get logy=Ilogy,—axloge; since a, loge and
log y, are constants, we get a linear graph if we plot log y against x.

(f) Confusion sometimes arises between (A) Hooke’s law, Charles’s
law, etc., where the general relation is y=y,(1+ax), (B) thermal
expansions of solids and liquids, with the same general relation, and
(C) the group of cases just mentioned; it may be as well to clear up
the position to some extent.

(A) When the change in y may be considerable, as in the thermal
expansion of gases under constant pressure, y, and y, may differ
considerably from y,, and y, must therefore be precisely defined.

(B) When the change in y is small in comparison with y, as in the
thermal expansion of a solid or liquid, it makes little difference
whether we represent the expansion as y.a, y,a or y,a times the
change of temperature. This vagueness is harmful only if it leads to
the belief that the rate of change of length or volume of the body
with temperature is precisely proportional to that length or volume,
in which case it should, strictly speaking, come under the next
heading (C).

(C) Consider a condenser of capacity C farads, charged with a
quantity Q coulombs of electricity which raises the P.D. between the
plates to V" volts; let the plates be connected through a high resist-
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10 INTRODUCTION

ance R ohms, then the current (i amp.) through the resistance will
have a value of V/R or Q/CR, at any time (t) when the charge is Q.
Since the current equals the rate at which electricity passes through
the resistance, ¢ also equals the time-rate of decrease of Q. If then
we plot a graph connecting Q with ¢, the current at any time will
be measured by the slope of the tangent to the graph at the point
representing that time. Hence the graph must be of such a form
that the slope of the tangent at any point is directly proportional to
the ordinate of that point. Mathematics shows (see note to Exp. 16)
that in that case the relation between points on the curve must be
O =0y, where Q, is the value of Q when t=o0. From this relation
we can get a linear graph, as shown above, in (a).

(2) The experiments in this book furnish many examples of the
manipulation of the observed quantities to give linear graphs; it will
be seen that in a considerable proportion of them there comes a
stage when the results of theoretical reasoning are quoted, expressed
as an equation which has already been transformed mathematically
so as to be effectively linear (although it may contain powers of the
variables higher than the first, or logs of them, etc.). In effect, these
transformations may be regarded as part of the laboratory work and
not of the theory, which does not itself call for such transformations.

This equation is useful in the practical work in two ways: first,
because it may point to the way in which the observations must be
manipulated to produce a linear graph so that we may check the
form of the law, or the relation between the variables, by testing the
straightness of the experimental graph; secondly, because we can get
accurate numerical values of the two constants a and b in the equation
ax+by=1 representing that law, by measuring or calculating the
intercepts on the two axes. The theoretical equation gives the values
of a and b in terms of the magnitudes of various quantities in the
apparatus used in the experiment, which are unchanged throughout
that experiment, and we can check the theory in this respect by
substituting the measured values of these quantities in our experi-
ment in the theoretical expressions for a and b, and comparing the
results with our measured values of a and b.

3. Distorted Graphs

If we have measured in a laboratory several pairs of numerical
values of two connected physical quantities, each expressed in its
appropriate units, 4 and B say, and wish to represent the results
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DISTORTED GRAPHS I1

graphically, the simplest way to do so is to use a sheet of squared
paper, divided into inches (say) and tenths, and to take an inch
horizontally to represent A and an inch vertically to represent B,
and number each axis progressively from the origin. The point
(such as P,) corresponding to each observation is then plotted as
usual, and a smooth curve drawn to fit these points as nearly as
possible; it is assumed in Fig. 3a to be a straight line. Let us call
such a curve the true graph of the experiment; it is what a mathe-
matician means by the phrase ‘the curve represented by an equation’.

B

07
315, 0-60
B
- 0-5 -
1+~ 3+15,0-60  4-0,0-60 025+
R
0 0
1 0

Fig. 3.

This graph may be badly spaced on the paper; we usually rectify
this by changing the scales on one or both of the axes, making an
inch on the axis represent many times, or a fraction of, 4 or B; the
two axes are then numbered off according to these new scales, as in
Fig. 3b, and the points are plotted and the smooth curve drawn
exactly as before.

What we have done in effect is to stretch, or shrink, the paper
carrying the graphs and all lines connected with it; the stretching or
shrinking takes place in the direction of the axes, and is usually
different in the two directions. Comparison of the two parts of Fig. 3
shows that this procedure produces a geometrical distortion of the
true graph; let us then call the result the distorted graph. In par-
ticular, lines such as QyM and P;M which are at right angles in the
true graph are far from perpendicular to one another in the distorted
graph. A tangent at a point of a curve in the true graph is still a
tangent in the distorted graph, but the normal which is at right
angles to that tangent in the true graph looks absurd in the distorted
graph; a circle distorts into an ellipse, and so on.
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12 INTRODUCTION

The only way in which the beginner is likely to be troubled by
the distortion is in the matter of measuring the inclination of a
straight line to one of the axes; that inclination is obviously increased
by any stretching perpendicular to that axis. He is therefore taught
not to measure the angle of inclination by a protractor and take the
tangent of that angle, either on the distorted or true graph, but to
measure what he learns to call the ‘slope’ of the line, by finding by
means of the graduations on the vertical axis the increase, for two
points on the line, of the distance from the horizontal axis, and the
corresponding increase of distance from the vertical axis and dividing
the former by the latter.

It will be seen that this is in effect merely a process of ‘referring
back’ to the true graph, since this procedure applied to a line on the
true graph gives the trigonometrical tangent of the actual inclination
to the axis, and as will be seen by comparing the two parts of Fig. 3
the same numbers are used in the same way when measuring the
slope of the line on both graphs. It is an application of the general
rule to work by the numbered graduations along the axes in any
graph, and disregard the lengths on the graph paper, especially
when those lengths are not parallel to either of the axes.

4. Most Probable Value of a Single Constant

The problem of deducing the most probable final result, whether
that be a single constant or a linear graph, from the results of a few
experiments when those results are not all identical was shirked in
the earlier parts of this Introduction; it is so important that it must
now be dealt with.

The general treatment will be much easier to follow if we first
analyse in detail a simple concrete case. Suppose that we have made
three sets of measurements of a single quantity such as the focal
length of a certain lens, and have got 20-60, 20-20 and 20-10 cm.
Let us denote by x, the most probable value of the quantity, ‘most
probable value’ meaning the closest approximation to the zrue value
that we can deduce from our observations.

These observations may be incorrect for either or both of two
reasons. First, the apparatus may be faulty; for instance, it may
contain a paper scale of lengths which expands when damp, or there
may be an undetermined zero error; errors on this account are often
termed ‘systematic errors’ and strictly speaking are not covered by
this section. Secondly, the setting of a moveable component or the
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MOST PROBABLE VALUE 13

reading taken may be faulty, for example in estimating tenths of
a scale division; these are usually termed ‘casual errors of experi-
ment’ and will for brevity be called ‘errors’ in this section.

The ‘error’ of any observation is properly the difference between
the observed and the true values; since we can never know the
absolutely true value we will take the error to be the amount by
which the observed value exceeds x,, the most probable value deduced
in some way from our observations. Hence the error may be positive
or negative.

It is reasonable to assume that the observed values are on the
whole grouped closely round the most probable value x,.

(a) It would be reasonable to choose x, so that it makes the
aggregate of all the errors, that is, their numerical sum without
regard to their signs, as small as possible. Now in this case, for such
close grouping, x, must lie somewhere between the largest, 20-60,
and the smallest, 20-10, and the numerical values of the errors of
these two observations will be 20-60 — x;, and x,—20-10. Hence what-
ever value x, may have between 20-60 and 20-10, their numerical
sum will be 20-60—x,+ x4 —20-10 or 0-50. To this must be added,
in order to get the aggregate, the numerical value of the second error,
which is 20-20~ x,, without regard to sign; whatever its sign, this
addition will be smallest when x, equals 20-20, for this error is then
zero. Hence on this assumption 20-20 is the most probable value
of x,, and the numerical sum of the errors is 0-40+0-00+0-10
or 0'50.

(6) Another possible assumption for getting x, is that the algebraic
sum of the errors should be zero.

This leads to 20-60 — x,+20-20 — &+ 20°10 — X, =0 Or

xy=1 x 60'9g0 =2030.

This is obviously equivalent to adopting the arithmetic mean of the
observed values as the most probable value, which is the usual
custom. It brings out a different value for x,, 20-30 instead of 20-20
as in (a); the numerical sum of the errors is now 0-6 instead of o-5.

(¢) A third possible assumption avoids all trouble with signs, by
dealing with squares, which are always positive. It is, that the sum
of the squares of the errors should be a minimum.

Let us try, without using anything but simple arithmetic, how
well the above values of x, (20-20 and 20-30) agree with this assump-
tion. If we calculate the sums of the squares of the errors when x,
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14 INTRODUCTION

is 20195, 20200 and 20-205 we find them to be o0-1730, 01700 and
o'1670 respectively. So the sum decreases continuously, and is not a
minimum when x,=20-20. Repeating this for x,=20-30, the sums of
the squares when x, is 20-2935, 20-300 and 20-305 are 0:14009, 0*14000
and o:14009 respectively, showing a minimum at x,=20-30.

Hence this assumption leads to the same results as the Arithmetic
Mean method of (b), but not as (a).

(d) Each of these three assumptions is reasonable; how are we to
choose between them? They have the common merit that, as shown
in the Theory of Probability, they all give identically the same result
when applied to an infinitely large number of observations; but in
practice we are concerned only with a small number of observations.
However, there is one distinct difference between the assumptions;
the first does not lend itself at all to mathematical treatment, the
second does so, and the third does so more widely and in some cases
(one of which we shall soon come across) it is the only one that can
be used. This third one is called the Method of Least Squares.

Hence, when dealing with a small number of observations of a
single constant we will adopt the result of the second and third
assumptions, that the most probable value is the arithmetic mean of the
observed values.

(e) Replacing the particular case of (b) and (c) by a more general
treatment, if we denote by ZE, the algebraic sum of the errors in all
the N observations which gave observed values x,, x,, ¥, etc., the
assumption in (b) gives

0=XE;=2X(xy — xy) = Zxxy — 2y = 2%, — Nx,.
2xy . . . X
But Wl is the arithmetic mean of x;, x,, etc., so x,= TV—I =the
arithmetic mean of the observed values.
Again, the assumption in (c) is that (x;—x)%+ (%, —x0)2+ etc.
is a minimum for changes in x,. Books on the differential calculus

show that this happens when gc— {(%1 —x0)2+ (%3 — %)%+ etc.}=o0,
0

or when —2(x, — &) —2(xy —xy) — etc.=o0,
or when —2{Zx, — Nxy}=o0,
or when

Zx . .
Xg= —N~1-=ar1thmet1c mean of the observed values as before.
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BEST-FIT STRAIGHT LINE 15

(5) Most Probable Linear Equation, or best-fit straight line

It may perhaps be advisable to preface this section with the words
inscribed over the entrance to Plato’s Academy, dyewuérpyros
undels elolrw, although it is the quantity rather than the advanced
quality of the mathematics in it that may deter him.

If we want to find the most probable position of the straight-line
graph among a number of plotted points representing observations,
which we may call the ‘best-fit line’, we have a less simple task, for
this line may be displaced broadside, or may turn about a fixed point,
or both simultaneously.

P (xn)',)

= ig. 4a

Let us make the reasonable assumption that the error of any of the
observations can be measured by the length of the perpendicular,
from the point P on the graph paper representing the observation,
dropped on the best-fit line.

Hence in Fig. 4a, if AB is the best-fit line, the error of observation
Pis PM.

Let x; and y;, %, and y,, etc. denote the pairs of observations,
represented on the graph by points P;, P,, etc.; we want to find
the best-fit straight line among these points, or the linear equation
which is most nearly satisfied by #, and y,, etc. It should be noted
that these values of x;, ¥, etc. probably differ widely in magnitude
and perhaps in sign, unlike the »,, x,, etc. of § 4 (¢) which are all
nearly equal in magnitude and almost certainly of the same sign.
Hence 2x; represents the algebraic sum of x,, etc., each keeping its

appropriate sign; }i—:;—l may therefore differ widely from any particular

value of x.
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16 INTRODUCTION

Denote the co-ordinates of some point A on the line by x5
then if AL and PL are parallel to the axis of x and y, AL=x,—x,
and PL=y,—Yy, Suppose that AB makes an angle « with the axis
of x; this is the inclination of the graph when the scales along the
two axes are equal, not the actual angle on a distorted graph (see
§3). From Fig. 4a we see that the error

PM=PL cos a— AL sin «
=(¥1—Yo) cos a— (%, — ) sin o. (1)
(a) Let us first apply condition (b) of §4, that the algebraic sum
of all these errors is zero if AB is the best-fit line. Then the algebraic
sum of the errors is
Z{(y1 o) cos a— (%, — ) sin o}
so we must have
(31— 0) 08 o~ (¥, — %) sin o} =0 (2)
as the equation from which to determine « and the fixed point

%o, Vo ON the best-fit line. This equation can be written, since « and
%y and y, are the same for all the IV observations,

cos aX(y;— o) —sin aX(x; —xy) =0
or cos a(2Zy, — Ny,) —sin o(Zx; — Nxg)=o. (3)

Denote %—1 by %, andz—zj%1 by y. Hence, since neither cos « nor
sin « can be infinitely large, this equation is satisfied if y,=% and
x,=X. Hence the best-fit line must pass through the point ¥, .

The equation (3) is satisfied by these values of x, and y,, whatever
be the value of «; hence condition () of §4 is satisfied by any straight
line through ¥, 7, and it does not suffice to fix completely the best-fit
line. We must therefore try another, more effective, condition; let
us try the Method of Least Squares, the condition (c) of § 4.

() This condition is that XPM? must be a minimum when 4B
is the best-fit line.

Now

PM?={(y,—,) cos a— (%, —%,) sin a}?
=(y1—90)? cos?a + (2, — %)% sin? o — 2(y; — ¥) (¥, — ) sin & cos .
Hence ZPM?=Z(y;—y,)? cos? a+ Z(x, —x)? sin? «
—22(y; —,) (%, — %) sin a cos a.

Denote this expression by u for brevity.
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BEST-FIT STRAIGHT LINE 17

Books on the differential calculus show that % is a maximum or a
minimum for changing values of x, and y, and « when

du du du
and —=o0
do

3?0 = 0’ E =0
respectively.
Now for a constant value of «
u=c0s?aZ(y, — )2 +sin2aX(x, — xg)? — 2 sinxcos aZ(y; — ¥o) (¥ — %o)-

(4)

Then if y, alone varies
57“ = —2 c0s? aZ(y; —¥o)+ 2 sin « cos aZ(x; —x,)
0

= —2 cos? a(Zy; —Zy,) + 2 sin « cos a(Zxy — Zx,).

We have denoted Xy, by Ny and Zx, by N%, and since x, and y,,
whatever they may be, are the same for all the N observations,

Zy,=Ny, and Zx,=Nx,.

Hence
%: —2 cos? a( Ny — Ny,) + 2 sin « cos &( NX— Nx,). (5)
0
Similarly
gg— = —2 sin? (V¥ — Nx;) + 2 sin « cos a(Ny — Ny,). (6)
0

Both (5) and (6) vanish if y,=% and x,=%. XPM? will therefore
be a maximum or minimum for any particular value of « if the line
AB passes through X, . This is what we found before, but we have
now a further condition in hand by which we may determine «.

In using this condition we can substitute ¥ for x, and ¥ for y,
in (4). Then if « varies, (4) gives

%= —2 cos « sin aX(y, —¥)*+2 sin « cos aZ(x; — ¥)?
—2(cos?a—sin?a) 53, ~F) (5~ F).  (7)
Hence the condition determining « for a maximum or minimum of
ZPM? is that (7) equals zero. Dividing by —2 cos? « and putting

m=tan «, we must have
o=m{Z(y,~F)*—Z(x, — %)%} + (1 —m?) Z(y, —F) (¥, — %)
Solving this quadratic,
Iy =) —Z(x,—X)?
m=A+ \/(4%+1), where A= — —. 8
Vi) 20 -NeE-n O

APP 2
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18 INTRODUCTION

Hence the straight line which we seek passes through the point %, ¥
and is inclined to the axis of x at an angle « whose tangent m is
given by (8).
But (8) gives two possible values for 7; denote them by m, and m,.
Then the equation of the best-fit line is either
y—y=my(x—%) (9)
or y—y=myx—X). (10)
It is easy to determine which of these two is the best-fit line, by
substituting a pair of observed values, say x,y,, which is far from
%, 7, in (9) and (10). Only one equation will be nearly satisfied, and
this contains the value of m to be adopted in the equation to the

best-fit line.

It is also easy to see what the other equation represents; from (8)

mmy={A+ /(A2 + 1)} {A—J(42+1)}=A2—(4*+1)=—1.

This shows that the straight lines represented by (9) and (10) are
at right angles to one another; in fact, if one is the best-fit line, the
other is the worst-fit line, corresponding to the condition that the
sum of the squares of the perpendiculars on it is a maximum.

(¢) A worked-out numerical example will help to make this general
theoretical reasoning more clear, and it may be a sufficient guide to
those who wish to make use of the method without understanding

the whole or any part of the reasoning on which the method is
based.

Suppose that we have obtained the five pairs of values x and y
shown in the first two columns of this table, either by direct observa-
tion or by manipulating direct observations in such a way as to
get a linear graph; some poor observations have been purposely
included, as will be seen in Fig. 4.

x y =% | (x—xP | y=y | (-3 | x—®>-)
+ —-—
7°30 340 | —2°330| 5429 | —6'302 | 3972 1468
8:23 700 | —1°400 1960 —2702 7°301 3782
9°33 1191 | —0°300 0°090 2:208 4875 —_ 0'662
11°42 10-89 1790 3°204 1-188 1°411 2°127
11-87 15°31 2'240 5-018 5608 31°45 12°56
5|48-15 |5]48-51 15701 84757 | 33'149
0662
9:630| 9702
_ _ . | 32487 ~
E y Z(x,—X) Z(y1—5)* | Ty —X)(y1—7)
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BEST-FIT STRAIGHT LINE 19

In this table ¥ and ¥ are found as the arithmetic means of the
numbers in each of the first two columns in the usual way. The
third column contains the values of x— & with the appropriate signs,
and the fourth the values of (x — )2, and consequently of Z(x; —X)?,
the sum of all the terms like (x, —&)2.

In the fifth and sixth, the same is done for Z(y; —y)?; the seventh
and eighth give the products of the third and fourth, paying due
regard to signs; these give the algebraical sum Z(x, — %) (y,—¥).

In this case 4 in (8) becomes

84757~ 15701
2 % 32°487
Substituting these in m=A4 + 1/(42+1) we get
m=1-063 + 1/(2°130) =1-063 + 1°459
=2-522 or —0°396. (r1)

or 1-063, and therefore 42=1-130.

Hence from the theoretical reasoning in § 5(b) the best-fit line
must pass through the point ¥, ¥ or 9-630, 9-702 and must have a
slope to the axis of x of either 2-522 or —0-396. That is, the relation
between x and y in the best-fit line must be either

¥ 9702 =2'522(x—9630) (12)
or ¥—9702= —0396(x ~9-630). (13)
To find out which of these it is, substitute a pair of observed values
of x and y from the table for x and y in each of these equations. Thus
3'40—9702=2522(7'30—9630) or —6-302= —2-522 X 2330,
3'40—9702= —0396(7:30—9:630) or —6-302= +0396 X 2:330.
It is obvious that the first equation is nearly satisfied, and the second
is not, so it is (12) that is the ‘most probable relation’ between x
and y, deduced from the observations.

It may be pointed out at this point that the foregoing procedure is
simply a matter of obtaining the ‘constants’ in (12) by computation;
graphical methods do not enter into it, any more than they do in
obtaining the arithmetic mean of a number of observed values of a
single quantity.

Computation is usually a more accurate process than graphical
methods, even in the case of a linear equation which is most favour-
able to the latter; but it is not so illuminating, or perhaps so con-
vincing. So it may be helpful to show graphically the final result of
the above computation.
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20 INTRODUCTION

The two straight lines represented by equations (12) and (13) are
shown in Fig. 4b; since the vertical and horizontal scales are not
equal this is a distorted graph (see §3), but if equal scales had been
used the two lines would have been at right angles to one another.

9:630,9-702

7 8 9 10 1 12 x
Fig. 4b.

It is obvious that the preparation of this table and the deduction
of (12) from it is more laborious than plotting the observations, as in
Fig. 45, and drawing the best-fit straight line among them ‘by eye’.
But the result is far more accurate, even if the observed points lie
nearly on a straight line; it is foolish to take elaborate precautions
for accuracy in the setting up and conduct of the experiment and then
to ‘spoil the ship for a haporth of tar’ by neglecting to use the most
accurate method of getting the final result from the observations.
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PART I. MECHANICS

Exp. 1. Stretched elastic string, 1

We know from experience that if we fix a string, rope, wire, etc.,
to two points at the same level, and stretch it as tightly as we like,
and then hang a weight on its centre, it will sag to a certain extent.
The purpose of this and the next experiment is to find out how the
amount of this sagging depends on the length of the string, its
extensibility, the tension we put in it before hanging on the weight,
and the magnitude of that weight.

(a) Attach a light scale-pan, whose weight (which should be less
than 7 g.) you have measured, to a spiral steel spring, which should
be not less than 7 cm. or more than 20 cm. long and should give
an extension between o-5 and 1-5 cm. per 100 g. wt. Hang the spring
vertically and plot a graph connecting the length (/ cm.) of the
spring and the load (7' g. wt.) on it, including the weight of the
scale-pan, up to about 60 %, extension. / must be measured accurately
between two well-defined points on the spring.

(b) Drive stout nails, up to half their length, into the edge at 4
and B of a board about a metre long, and fix the board with its face
horizontal. Attach the spring to 4 and B by strong thread (fine
wire, such as s.W.G. 26, will serve) which is strong enough to carry
1 kg., stretching the spring to about 1} times its unstretched length.
Guard against any possibility of the attachments to the nails slipping,
by taking several tight turns round the nail before fastening off the
thread. Measure the length (2L cm.) of AB, and the stretched length
(/1 cm.) of the spring; deduce from your graph the tension (7' g. wt.)
of the string and thread corresponding to this length /; cm.

Hang the scale-pan, by a loop of cotton through which the thread
passes, from a point B on the thread vertically below C, the mid-
point of AB, and fix a vertical millimetre scale with its edge passing
through C. Measure the vertical displacements (y cm.) of P for a
series of loads (w g. wt.). The loop of cotton must be moved along
the thread as required to keep P vertically below C. y should not
exceed 4 or 5 cm.

Plot a graph with @ as ordinates and y as abscissae.

Theory (see appended note) shows that for very small values of
y/L this graph should be a straight line through the origin; determine
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22 MECHANICS

from your graph the slope to the axis of y of this line, if it is a straight
line, or if the graph is curved the slope of its tangent at the origin.
This ‘slope’ must be measured, not by a protractor, but by using
the scales along the axes; see Introduction (§ 3).

Compare your value of this slope with its theoretical value
2T, /L.

(¢) Drive another nail into another part of the board’s edge, about
4L from B, and repeat part (b) of the experiment.

w

Fig. s.

If in each case your results agree (except for differences that can
legitimately be ascribed to casual errors of experiment) with the

theoretical relationship w= 2—LI—1—1 y, they may be taken to establish

that relationship, since the values of T, and L were taken at
random.

In that case you have proved experimentally that the force needed
to displace transversely, through a certain small distance, the centre
of a stretched elastic string is directly proportional to its tension
before displacement, and inversely proportional to its length, and
that if all other things remain unchanged the force is directly pro-
portional to the displacement.

Note on the Theory

Suppose that the spiral spring used in the experiment, when the
tension T g. wt. exceeds a certain amount, obeys the law [=aT +b, so
that an additional tension of 1 g. wt. causes an additional extension of
a cm. If the initial tension of the thread is 7 g. wt., and its tension
when P is displaced y cm. is T g. wt., the spring will have increased
in length by a(T—T;) cm. and the length of P4 or PB will be
L+%a(T—T;) cm.
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STRETCHED ELASTIC STRING 23
Denote the angles PAB and PBA in Fig. 5 by B; then

y={L+g(T— Tl)} sin 8
=(L~‘—Z§l) sin /3+g T'sinB.

Now since P is in equilibrium

w=2T sin B.
Henc = L—a—Tl) sin,3+(iv
ence y= 2 4 ’
. o 4y—aw
or sin B——z———————(ZL_aTl).
But tan B=%, so that sin B=7(-L2L+§2‘)' Expanding this by the
binomial theorem
ing=d(1+2) 22 (-2 x__)
smﬁ—L(I +L2) —L(I 2L2+8L4 , etc.
ey P
Hence saL—aly) L al? nearly,
y 2
or 4y—aw=2(2L—aT1)z—(zL-—aTl)i—a nearly,
or w=3fT1y+§—'a—_Z:—Tl y® nearly
=2—L—le if % is very small.

It will be seen that there is no need here to take into account the
difference between the real and the ideal unstretched length of the
spring, dealt with in the Introduction (§ 2 (a)), since the constant in
the final equation involves only L and the initial tension T, which is
read off the first graph.

Exp. 2. Stretched elastic string, 11

Take the set-up of Exp. 1, but make 2L about 60 cm., use a spring
which stretches about o'5 or 0-8 cm. per 100 g. wt., and adjust the
initial tension (7 g. wt.) so that it is not much greater than is re-
quired to separate all the consecutive turns of the spiral spring.
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24 MECHANICS

Measure 2L, determine T as in Exp. 1 and the extension (a cm.)
per g. wt. for loads more than sufficient to separate consecutive
turns, by hanging up the spring as in part (a) of Exp. 1, loading it
with a succession of weights w, drawing a graph, and measuring its
slope to the axis of w, which gives a.

Get the smooth graph connecting w with y as in part (b) of Exp. 1,
carrying the value of y from o to 7 or 8 cm.

Draw tangents to this smoothed graph at points corresponding to
values of y of 6, 5, 4, 3 and 2 cm. Measure the slope to the axis of y
of the tangent in each case (not by a protractor but by using the
scales along the axes; see Introduction (§ 3)), and plot a graph con-
necting these values as ordinates with the corresponding values of
y? (not of y) as abscissae.

The appended note on theory shows that the graph should be a
straight line, making an intercept on the vertical axis of 27, /L, and
2L —aT,

al®? ~

Calculate the intercept and slope of your second experimental
graph, and compare them with these theoretical values, after sub-
stituting the measured values of L, T and a.

sloped to the axis of y? at 3 x

Note on the Theory

In the note appended to Exp. 1 the theoretical relation between
2T 2L—aT
w and y was shown to be w=—L—1y+ —aE;——l
of y/L.
If we keep T, L and a unchanged, and differentiate both sides of
this equation with respect to y, we get for the slope (dw/dy) to the
axis of y of the curve, at the point corresponding to y,

do_2Ty . 2L—aly ,

y® for small values

dy L 3% aLs

Hence if we measure this slope at a number of points on the
graph, and plot it as abscissa against the corresponding value of y*
as ordinate, we should get a straight line, which should make an
intercept 27T, /L on the axis of dw/dy, and should be inclined to the
2L —aT,

al® -

This is a device for getting a linear graph which is not mentioned
in the Introduction.

axis of ¥? at a slope of 3 x
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RIGID PENDULUM 25
Exp. 3. Rigid pendulum
The ‘ideal simple pendulum’ is found only in text-books; the
simple pendulum found in laboratories is chiefly of use as a cheap
and convenient time-measurer. The pendulum of a clock, or any
rigid object that can swing in a vertical plane about a fixed horizontal
axis under the action of gravity, can be of almost any shape, and the
purpose of this experiment is to find out something of the way in
which its time of swing depends on that shape and on the distance
between its centre of gravity and its point of support.

Ke)y
lo) e A
D
/7
7/
/
/
/
1
I
o
°B + I
\ G !
\ /
\ /
\ O/
\
\ o /C
N E %
~ //
Fig. 6.

Take as the object to be used as the rigid pendulum a piece of
cardboard of any shape and size, the larger the better, but a rectangle
with sides of 20 and 24 cm. is convenient. Locate its centre of gravity,
G, by balancing it on the point of a needle. Punch holes, about
3—5 mm. in diameter, in it as in Fig. 6, the centres 4, B and C of
three of them being equidistant from G, and D and E wherever
you like. Stick the needle through a small cork and support it hori-
zontally by fixing the cork in a retort stand. Pass the needle through
A, so that the cardboard can oscillate freely in its own plane like a
pendulum; measure the distance (/; cm.) of G from the point of
support, estimating tenths of a millimetre.

Set up in front of the cardboard a simple pendulum, with its
thread held between two pieces of wood in the jaws of the same or
another retort stand, so that its length (/; cm.) from the centre of
gravity of its bob to its point of support can be easily varied and
accurately measured. Adjust /, until the two pendulums, when dis-
placed from their equilibrium positions and released simultaneously,
have the same periods of oscillation, so that they continue to swing
together until the oscillations die out.
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26 MECHANICS

Measure /,, the length of the so-called ‘Simple Equivalent Pen-
dulum’. Keeping /, unchanged, use B and C in succession as points
of support of the cardboard, and see whether the cardboard still
oscillates in time with the simple pendulum of length /, cm.

If so, calculate the value of a2, where

L(l,—1)=a% (1)

Find in the same way the lengths of the simple equivalent pen-

dulums when the holes D and E are used; calculate a? in each case,
changing /; and /; in (1) to suit each case.

If, as is probable, the value of a2 is found to be about constant,

calculate the arithmetic mean of its observed values. Then from (1)

a2

71"

or, in words, the length of the simple equivalent pendulum exceeds
the distance (/,) between the centre of gravity and the point of sup-
port of the rigid pendulum by a?/l;, where a? is a constant.

If the cardboard is a uniform rectangle and the effect of the holes
is ignored, this constant a should theoretically equal one-twelfth of
the sum of the squares of the length and breadth of the cardboard.
Check this in your case.

l2=ll+

Note on the Theory

Text-books of Mechanics show that the period of oscillation of a
m(I2+ k?)
mlyg
distance of its centre of gravity from its point of support, and mk?
is its moment of inertia about an axis through its centre of gravity
perpendicular to its plane of oscillation. So a simple pendulum of

length /, has a period of oscillation of

2
or [ or 2m /i
lg g

R=Ll—B=I(l,~1) or l=l+

rigid pendulum equals 27 , where m is its mass, /; the

Hence in this case
B+k* 1, k2
Lhg ¢ L
These text-books also show that in the case of a rectangle of sides
b and ¢, B2 =75(b%+¢?).
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SIMPLE PENDULUM 27

Exp. 4. Simple pendulum

The object of this experiment is to investigate the relation between
the length (/) and the period (T') of a simple pendulum, with the
help of a graduated ruler, but without using a stop-watch or any
theory of mechanics in general or s.H.M. in particular.

Set up a simple pendulum of any length (4,), but it is convenient
to take it about 20 cm.; measure /;. This pendulum will serve as a
standard, and its period as a time-unit, for the experiment.

Set up another simple pendulum, of length between 78 and 82 cm.,
with its bob at about the same level as the bob of the first and an inch
or two in front of it; the line joining the two bobs, when they are
hanging at rest, should be roughly perpendicular to the planes in
which they will swing. This pendulum can best be supported by
passing its thread between two thin pieces of wood gripped between
the jaws of a retort stand, so that the length (/) of the pendulum
can be adjusted by sliding the thread between the pieces of wood
when the jaws are slightly opened.

Start the two pendulums simultaneously by ‘kicking them off’
gently with the face of a ruler held against them while they hang
freely at rest. Adjust the length of the front pendulum so that the
two pendulums pass simultaneously through their initial central
positions after one complete, to-and-fro, swing of the front pendulum
and two complete swings of the back one.

If you have made this adjustment with absolute precision, the
two pendulums will coincide after every whole number of swings
of the longer pendulum, and you should improve your adjustment
accordingly; in fact, you can in this way compare the periods of the
two pendulums more accurately than you can compare their lengths.
It corresponds to timing a large number of swings when using a
stop-watch. Measure /, the length of this front pendulum.

Repeat the experiment, adjusting the length of the front pendulum
so that it makes two complete swings while the standard one makes
three swings; expressing it otherwise, it has to make z swings while
the standard one makes #+ 1 swings, # being two in this case, and
one in the first case.

Repeat the experiment with 7 equal to, say, 3 and 4.

Make a table of your corresponding values of # and /. These
quantities must be connected by some law; the next step is to dis-
cover it. This can best be done by assuming various forms which
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28 MECHANICS

the law is likely to take, and testing each by applying it to the four
pairs of values of # and / which you have obtained.
The simplest hypothesis is that /=An?, where 4 and p are con-
stants. If this is so,
log I=log A+p log n,

and the graph connecting log/ and log z should be a straight line.
Test this by plotting the graph connecting your values of log/ and
logn; you will probably get a curved graph, and if so you must
reject this hypothesis and try out another.

We have found that one pendulum, of variable length /, makes »
swings in the same time as another, of fixed length /), makes n+1
swings; a possible form of the law would seem to be that

I?=I(n+1)* or I (Ej-—l)p
IA n

l n+1
or logz—plog( p” ),
where p is some fixed number.
In that case, the graph connecting log ///; and log (l?) should be

a straight line through the origin, with a slope of p to the axis of

log (’LLI)
-

You can test this by your experimental results; add to your table
columns showing logl/—log/, and log(n+1)—logn, and plot the
graph connecting the last two columns. You will probably find that
this hypothesis is confirmed, and that the most probable value of
p is 2-0.

If so, the relation is

n

or ;0= (11-’:_1)2 (1)

logé=2 log(n+1)

Since you took z more or less at random and (1) holds good in
all the cases you tried, it is safe to assume that it will hold good for
any value of » which is a whole number.

But we want the relation between the length and period of any
pendulum, not the relation between / and » under these conditions;
so a further step is required.
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SIMPLE PENDULUM 29

Denote by T sec. the period of any of the pendulums for which (1)
holds good, and by T, sec. the period of the standard (back) pen-
dulum. Since the front pendulum makes 7 swings while the standard
pendulum makes 7+ 1 swings, #T must equal (n+1)T,, or

n+r T

Ty (2)
where # is any whole number. Substituting this in (1) we get

L £)2

b \T,

2 2
or 2l = % =A1 (3)

where A is some constant which does not depend on T or I

In this form, (3) is a general law connecting T and / in any simple
pendulum. But it is very important to realise that you have not
really ‘verified’ this law by your experiments; all that you have done
is to discover and verify it in a limited number of cases. Even in
those cases you did not actually measure T, but arrived at its value,
quite legitimately, by comparison with T,.

Strictly speaking there is the same imperfection in the ordinary
laboratory method of verifying the law by measuring the periods of
simple pendulums of various lengths by means of a stop-watch.
For the second hand of a watch does not move uniformly, but by a
series of jerks; it will only measure an interval of time that begins
and ends with these jerks. It is most unlikely, if /is taken at random,
that the corresponding 7" will be exactly an interval of this kind.
For a theoretically sound verification we must use a time-measurer
such as a chronograph which moves at uniform speed. In practice,
the error caused by using a stop-watch is so small that it is less
serious than ‘casual’ errors of observation, and the theoretical
imperfection of this practical method of verifying the law is over-
looked.

But it is too large in this case to be overlooked. The difficulty
cannot be overcome by the argument, which in many cases is valid,
that you took /, at random, so the law may be expected to hold good
for any value of /, and therefore of /. For it is quite possible that the
constant 4 in (3) may depend on the mass or length or period of the
standard pendulum, and thus may not be the same for different
groups of front pendulums. However, the appended note on theory
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30 MECHANICS

shows that this is not the case, if we can trust the theoretical reason-
ing, and this argument applies also to the verification of the law by
means of a stop-watch. Hence we can claim in both cases alike that
we can verify the law by a combination of experiment and theoretical
reasoning.

Note on the Theory

We have shown experimentally that for any simple pendulum in
a certain group, of length / and period T, T?=A4l, where A does not
depend on T or /; the only other physical quantities on which A for
any group can depend are the acceleration (g) of gravity at the place
of experiment and the period (7,) and the mass (m,) of the bob of
the standard pendulum of its particular group. We can therefore
represent A by Nm§g" T§, where N, ¢, r and s are numbers.

Then T?=Nm{gT§l @)

is an equation which holds good for every simple pendulum.

Now it is theoretically necessary that in such an equation every
term should have the same dimensions in mass, length and time,
separately. The dimension of the left-hand term of (i) in mass is
zero, and of the right-hand term is ¢; hence q=o.

The dimension of the left-hand term in length is zero, and of the
right-hand term is 7+ 1; hence 7+ 1=0, orr=-1.

The dimension of the left-hand term in time is 2, and of the
right-hand side is —27+s; hence —2r+s=2, or since r= —1, s=0.

Consequently, 4=N/g and does not depend on T, or m,; so it is
the same for every group, and every simple pendulum obeys the
same law o ]_\ll’

8
where N is some number.

Exp. 5. Bending of a lath, I

The object of this and the two following experiments is to check
the theoretical reasoning (which is far from simple) by which we
can determine the behaviour of a straight elastic beam, supported
horizontally at two points and loaded at a third point with sufficient
weight to bend it to a moderate extent. If you did not have this
theory as a guide, any experiments you might make would probably
not be very illuminating; but using it as a guide your experiments
should establish the truth of a rather complicated and useful formula.
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BENDING OF A LATH 31

The following apparatus will be needed in this and the next two
experiments; two short glass tubes or rods supported horizontally
and parallel to one another on piles of wood blocks at equal heights
of about 1 ft. above the bench; the tubes should be prevented from
moving on the blocks by means of tin-tacks, and the blocks must
give them firm support which does not yield appreciably when
loaded. A boxwood metre ruler, lying face upwards on the tubes;
the ruler must not rock on the tubes. A scale-pan, which may be
made of a piece of plywood about 6 in. square, which can be hung
by a thread passed over the ruler at any desired point P; a set of
weights up to a total of 1000 or 1500 g.; a pin which can be fixed

Fixed Scale

Fig. 7.

at a point Q on the upper face of the ruler by a piece of soft wax
so that it overhangs the edge of the ruler, and a scale held vertically
in a retort stand, with which to measure the vertical displacement
(¥ cm.) of O below its position (M) when the scale-pan carries no
load (tenths of a millimetre to be estimated).

Fix A4 and B about 94 cm. apart; hang the scale-pan from a point
P on the ruler, about 35 cm. from 4, and keep P unchanged through-
out the experiment. Fix a pin at a point Q, about 55 cm. from 4,
keeping O unchanged throughout the experiment. Load the scale-
pan with an increasing, and then decreasing, weight W g., disregard-
ing the weight of the scale-pan, and observe the corresponding
values of y up to a maximum of 2 or 3 cm. Plot a graph connecting
y and W. It will probably be a straight line through the origin.

Repeat the operation, hanging the scale-pan from Q and measur-
ing vertical displacements of P. Plot these observations of y and W
on the same axes; the corresponding graph will probably be almost
identical with the former graph. If so, P and Q are interchange-
able; the ‘deflection’ of the ruler at any point P caused by a given
load on the ruler at any other point Q is the same as the deflection
at Q caused by the same load at P.
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