Introduction to Environmental Modeling

The textbook presents an understanding of how basic physical descriptions can be translated into mathematical analogues that provide an opportunity to investigate environmental processes. Examples come from a range of hydrologic, atmospheric, and geophysical modeling problems. The emphasis is on simple examples and calculations that add to understanding. The book provides a sense for the meaning of mathematical expressions, a physical feel for their relations to the processes that they describe, and confidence in working with mathematical solutions.

Addressing environmental modeling problems from a scientific basis requires integration of physical understanding, mathematical skill, courage in making reasonable approximations, and transparency in identifying strengths, weaknesses, applicability, and limitations of the models formulated, employed, and solved. From this perspective, embarking on environmental modeling requires a student to depart from the familiar comforts of well-defined problems for which there is a well-defined solution. Students need to learn how to tackle often incompletely-defined environmental problems in an effort to understand the unknown elements of the past, present, or future and to learn where further studies are needed to increase understanding. The need to approximate, to span mathematics, science, and computational methods, to critique all elements of an analysis, and to admit limitations on what has been accomplished, all contribute to making environmental modeling an exciting, yet sometimes uncomfortable, activity. The goal of this book, in essence, is to present the timeless basic physical and mathematical principles and philosophy of environmental modeling, often to students who need to be taught how to think in a different way than they would for the average more narrowly-defined engineering or physics problem. Minimum prerequisites for the student reader (for any realistic modeling) include a knowledge of calculus through differential equations, but the book provides the mathematical and physical tools needed as the occasion arises.

Dr. William G. Gray holds a Ph.D. in chemical engineering from Princeton University. He has held full time faculty positions in civil engineering at Princeton and the University of Notre Dame and in environmental engineering and the Curriculum for the Environment and Ecology at the University of North Carolina (UNC), Chapel Hill. He has received teaching awards at Notre Dame and UNC. Dr. Gray is a Fellow of the American Geophysical Union, Distinguished Engineering Alumnus of the University of California at Davis, a Fulbright Scholar, and a Langbein Lecturer of the Hydrology section of the American Geophysical Union. He was editor of *Advances in Water Resources* for a dozen years and editor of *Water Resources Research* for four years. He is the author of approximately 140 articles in refereed journals and is a co-author of eight books.

Dr. Genetha A. Gray is a data scientist in the Talent Intelligence and Analytics organization at Intel where she analyzes talent supply chains and models career progression. Before joining Intel in 2014, Genetha spent 12 years at Sandia National Labs. There, she worked on problems related to the electrical and mechanical engineering of systems, the storage of nuclear waste, groundwater remediation, cyber security, and energy. She has a Ph.D. in Computational and Applied Mathematics from Rice University and specializes in analytics, optimization, data fusion, model validation, and uncertainty quantification. She has co-authored more than 25 research publications and given more than 60 presentations.

Introduction to Environmental Modeling

WILLIAM G. GRAY

University of North Carolina at Chapel Hill, USA

GENETHA A. GRAY Intel Corporation, USA

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107571693

© Cambridge University Press 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalog record for this publication is available from the British Library.

ISBN 978-1-107-57169-3

Additional resources for this publication at www.cambridge.org/9781107571693

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter <u>More Information</u>

> To the next generation of modelers, Charlotte, Ben, Lucy, Gray, and Iris; and to those who gave them life, love them, and nurture their environment.

Contents

Lis	t of Fig	gures		page xv	
Pre	eface			xix	
1	Philosophy and Approach				
	1.1	Introdu	iction	1	
	1.2	Elemen	nts of environmental modeling	2	
	1.3	Educat	ion vs. training	4	
	1.4	Princip	bles ensuring education	5	
		1.4.1	Education and expansion of thought processes	5	
		1.4.2	Challenge, persistence, critical analysis, and growth	6	
		1.4.3	Learning through reading, discussion, problems, and critical	7	
		144	assessment	7	
	15	Conclu	ision	7	
	1.6	Proble	ms	8	
2	Thoughts on Use of Data				
	2.1	Introdu	action	10	
	2.2	On nui	nbers in elementary education	12	
	2.3	What's	s the answer?	13	
	2.4	Given	the process, what's the answer?	16	
	2.5	Given	the answer, what's the process?	19	
	2.6	Given	an answer, is it useful?	21	
		2.6.1	Given the process, is the proposed answer useful?	22	
		2.6.2	Given the data, is the answer useful?	23	
	2.7	Conclu	ision	24	
	2.8	Proble	ms	25	
3	Mode	els as a Fra	mework for Study of Data	26	
	3.1	Introdu	action	26	
	3.2	Model	S	29	
		3.2.1	Physical models	30	
		3.2.2	Conceptual models	32	
		3.2.3	Mathematical models	33	
	3.3	Definit	ions	37	

vii

© in this web service Cambridge University Press

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

viii	Contents					
	2.4	Element	a of a datamainistic model	41		
	3.4	Element $2.4.1$	S of a deterministic model	41		
	25	5.4.1 Modelin		44		
	3.5	Approac	bes to modeling	47		
	3.0	Summar	ry of the modeling procedure	51		
	3.8	Quantify	ying the utility of a model	54		
	5.0	3.8.1	How uncertainty gets introduced	54		
		3.8.2	Reducing uncertainty	55		
		3.8.3	Verification and validation development	58		
		3.8.4	Verification	58		
		3.8.5	Validation	59		
		3.8.6	Uncertainty quantification	60		
		3.8.7	Calibration	61		
		3.8.8	Final thoughts on validation	63		
	3.9	Conclus	ion	64		
	3.10	Problem	18	64		
4	Length and Time Scales		66			
	4.1	Introduc	tion	66		
	4.2	Scales o	fobservation	68		
	4.3	Continu	um scale, averaging, and the rev concept	69		
	4.4	Reflectio	ons on measurement of properties of a continuum	73		
	4.5	Reflectio	ons on a general governing equation	75		
	4.6	Length s	scales	77		
	4.7	Time sca	ales	80		
	4.8	Problem	18	82		
5	Mecha	nisms of C	hange	85		
	5.1	Introduc	ction	85		
	5.2	Element	s of body sources	86		
		5.2.1	Sources of total mass	87		
		5.2.2	Sources of chemical species	87		
		5.2.3	Sources of momentum	87		
		5.2.4	Sources of energy	88		
	5.3	Element	s of surface sources and transport	89		
		5.3.1	Velocity	89		
		5.3.2	Diffusion and dispersion processes	92		
		5.3.3	Mass, momentum, and energy diffusion	92		
		5.3.4	Mass, momentum, and energy dispersion	94		
		5.3.5	Convection, advection, and flux	97		
	. .	5.3.6	Waves	98		
	5.4	Conclus	10 n	99		
	5.5	Problem	IS	100		

ix	Contents				
6	6 Dimensional Analysis				
	6.1	Introduction	1		
	6.2	Parameter selection	1		
		6.2.1 Problem identification	1		
		6.2.2 Modeling objectives	1		
	6.3	Dimensional analysis in general	1		
	6.4	Dimensional analysis of solid–liquid problem	1		
		6.4.1 Well-mixed solid–liquid problem	1		
	<i></i>	6.4.2 Solid–liquid problem without mixing	1		
	6.5	Dimensional analysis of sedimentation	1		
	6.6	Dimensional analysis of pipe flow	l		
	6./	Dimensional analysis of porous media flow	1		
	6.8	Some important dimensionless numbers	1		
		6.8.2 Brandtl number	1		
		6.8.2 Schmidt number	1		
		6.8.4 Peclet number	1		
		6.8.5 Biot number	1		
		6.8.6 Froude number	1		
		6.8.7 Rossby number	1		
		6.8.8 Bond and capillary numbers	1		
	6.9	Conclusion	1		
	6.10	Problems	1		
7	Mathe	ematical Instruments of Change	1		
	7.1	Introduction	1		
	7.2	First order discrete time models	1		
		7.2.1 Malthusian model	1		
		7.2.2 Logistic model	1		
		7.2.3 Gompertz model	1		
		7.2.4 Harvest models	1		
	7.3	Stability for discrete models	1		
		7.3.1 Stability theorem	1		
		7.3.2 Stability for Malthusian models	l		
	74	1.3.3 Stability for logistic models	1		
	7.4	7.4.1 Einenee	1		
		7.4.1 Finance	1		
	75	Conclusion	1		
	7.3 7.6	Problems	1		
8	Deriva	atives and Scales	1		
	Q 1	Continuous change in time and snace	1		
	0.1	Continuous enange in time and space	1		

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

x		Contents				
		8.3	Scales in model formulation	165		
		8.4	Time derivatives	166		
			8.4.1 General time derivative	167		
			8.4.2 Eulerian approach	171		
		05	8.4.3 Lagrangian approach	172		
		8.3 9.6	Comments on time derivatives	1/5		
		8.0 0 7	Doi product or inner product	170		
		0./	Cross product	170		
		0.0 8 0	Comment on coordinate systems	1/0		
		0.9 9 10	Normal direction to a surface	101		
		8.10 8.11	Normal valocity of a surface	182		
		0.11	8.11.1 Case I: fixed CV with $\mathbf{w} = 0$ at every point on the	165		
			6.11.1 Case 1. Integration of the set	19/		
			8 11.2 Case II: the CV is moving with $\mathbf{w} \neq 0$ at some boundary	104		
			$0.11.2$ Case II. the CV is moving with $w \neq 0$ at some boundary	18/		
		8 1 2	Divergence	185		
		0.12	8 12 1 Divergence in cylindrical coordinates	187		
		8 13	Conclusion	189		
		8.14	Problems	190		
				170		
	9	Integr	al Theorems and Volume Kinematics	194		
		9.1	Introduction	194		
		9.2	Divergence theorem	195		
		9.3	Gradient form of the divergence theorem	199		
		9.4	Digression	201		
		9.5	General transport theorem	202		
			9.5.1 Kinematics of a general control volume	205		
		9.6	Reynolds transport theorem	205		
			9.6.1 Kinematics of a material volume	206		
		9.7	Transport theorem for a fixed volume	207		
			9.7.1 Kinematics of a fixed volume	207		
		9.8	Conclusion	208		
		9.9	Problems	208		
	10	Mass (Conservation	210		
		10.1	Introduction	210		
		10.2	Mathematical tools	211		
		10.3	Integral forms of conservation of mass	213		
			10.3.1 Conservation of mass for a general volume	213		
			10.3.2 Conservation of mass for a material volume	216		
			10.3.3 Conservation of mass for a fixed volume	216		
		10.4	Point form of conservation of mass	217		
			10.4.1 Point conservation of mass from a general volume	219		

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

xi	Contents				
		10.4.2 Doint concernation of mass from a material values	221		
		10.4.2 Point conservation of mass from a fixed volume	221		
	10.5	Total mass conservation in a stirred tank	224		
	10.5	10.5.1 Differential mass conservation in a CSTR	225		
		10.5.2 Discrete mass conservation in a CSTR	220		
	10.6	Hydrologic routing	227		
	10.0	10.6.1 Hydrologic routing for a reservoir	220		
		10.6.2 Hydrologic routing for a channel	231		
	10.7	Conclusion	232		
	10.8	Problems	233		
1	1 Spec	ies Mass Conservation	237		
	11.1	Introduction	237		
	11.2	General species mass conservation principle	237		
		11.2.1 Conservation of species mass for a general volume	238		
		11.2.2 Conservation of species mass for a material volume	241		
		11.2.3 Conservation of species mass for a fixed volume	242		
	11.3	Point form of mass conservation for a chemical species	242		
	11.4	Conservation of moles	244		
	11.5	On the velocity of a multispecies solution	245		
		11.5.1 Barycentric or mass average velocity	245		
		11.5.2 Molar average velocity	247		
	11.6	Introduction to the diffusion/dispersion vector	249		
	11.7	Approximate form of the diffusion/dispersion vector	250		
		11.7.1 Mass dispersion vector	250		
		11.7.2 Molar dispersion vector	255		
	11.8	Species mass conservation in a stirred tank	256		
		11.8.1 General solution for species mass fraction	257		
		11.8.2 Constant inflow and outflow	258		
		11.8.3 Discrete solution for species mass fraction	261		
	11.9	Advection–Dispersion equation	262		
	11.1	0 Solution of the advection–dispersion equation	265		
		11.10.1 One-dimensional analytic solution	266		
		11.10.2 Superposition for linear ADE solution	267		
	11.1	1 Conclusion	268		
	11.1	2 Problems	269		
1	12 State	ement of Conservation of Momentum	275		
	12.1	Introduction	275		
	12.2	Elements of the momentum conservation equation	275		
	12.3	Second order tensor	277		
		12.3.1 Mathematical relations	277		
		12.3.2 Physical meaning of two example tensors	280		
	12.4	Integral momentum conservation equations	282		

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

	Contents					
		12.4.1 Momentum conservation for a general volume	282			
		12.4.2 Momentum conservation for a material volume	202			
		12.4.2 Momentum conservation for a fixed volume	203			
	12.5	Point form of the momentum conservation equation	283			
	12.5	Viscous stress tensor	204			
	12.0	Navier_Stokes equation	280			
	12.7	Bernoulli equation	207			
	12.0	Microscale mechanical energy balance	291			
	12.9	System-scale mechanical energy balance	294			
	12.10	Conclusion	297			
	12.11	Problems	298			
	12.12	Appendix: angular momentum equation	301			
13	Conse	rvation of Total Energy	303			
	13.1	Introduction	303			
	13.2	Statement of the total energy equation	304			
	13.3	Point forms of total energy conservation	306			
	13.4	Thermal energy balance	308			
	13.5	Internal energy equation in terms of temperature	309			
		13.5.1 Introduction of heat capacity	309			
		13.5.2 Introduction of Fourier's law	310			
	13.6	Conclusion	311			
	13.7	Problems	311			
14	Mixed	-scale Modeling	313			
	14.1	Introduction	313			
	14.2	Starting point	314			
	14.3	Equations for hydraulic routing	316			
		14.3.1 Mass conservation for hydraulic routing	317			
		14.3.2 Momentum conservation for hydraulic routing	310			
		1 1012 Homentain conservation for hydraune routing	517			
		14.3.3 Special form of the momentum equation	324			
	14.4	14.3.3Special form of the momentum equationFriction slope parameterization	324 325			
	14.4 14.5	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques	324 325 328			
	14.4 14.5	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation)with $\beta = 1$	324 325 328 330			
	14.4 14.5	14.3.3 Special form of the momentum equation Friction slope parameterization Implementation of hydraulic routing techniques 14.5.1 Unsteady, non-uniform flow (full dynamic equation) with $\beta = 1$ 14.5.2 Steady, non-uniform flow (quasi-steady dynamic wave approximation)	317 324 325 328 330 330			
	14.4 14.5	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation)with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)	319 324 325 328 330 330 331			
	14.4 14.5	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation)with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)14.5.4Steady, uniform flow rate Q (normal flow)	319 324 325 328 330 330 331 332			
	14.4 14.5	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation) with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)14.5.4Steady, uniform flow rate Q (normal flow)14.5.5Kinematic wave approximation	319 324 325 328 330 330 331 332 332			
	14.4 14.5 14.6	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation) with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)14.5.4Steady, uniform flow rate Q (normal flow)14.5.5Kinematic wave approximationData support	319 324 325 328 330 330 331 332 332 332 333			
	14.4 14.5 14.6 14.7	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation) with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)14.5.4Steady, uniform flow rate Q (normal flow)14.5.5Kinematic wave approximationData supportMechanical energy equation for hydraulic routing	317 324 325 328 330 330 331 332 332 332 333 335			
	14.4 14.5 14.6 14.7 14.8	14.3.3Special form of the momentum equationFriction slope parameterizationImplementation of hydraulic routing techniques14.5.1Unsteady, non-uniform flow (full dynamic equation) with $\beta = 1$ 14.5.2Steady, non-uniform flow (quasi-steady dynamic wave approximation)14.5.3Steady, non-uniform flow (diffusion wave approximation)14.5.4Steady, uniform flow rate Q (normal flow)14.5.5Kinematic wave approximationData supportMechanical energy equation for hydraulic routing Shallow-water equations	317 324 325 328 330 330 331 332 332 333 335 338			

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

More Information

ii -	Contents					
		14.8.2	Momentum conservation for shallow-water flow	340		
	14	4.9 Conclus	sion	346		
	14	4.10 Problen	ns	347		
	15 Po	orous Media ai	nd Groundwater Systems	349		
	15	5.1 Introdu	ction	349		
	15	5.2 Conside	erations for porous media flow and transport	351		
	15	5.3 Fluid m	ass conservation in a porous medium	353		
	15	5.4 Macros	cale fluid mass conservation equation	356		
	15	5.5 Matrix	deformation and material compressibility	358		
	15	5.6 Darcy's	law	362		
	15	5.7 Flow eq	juation in terms of pressure	366		
	15	5.8 Flow eq	juation in terms of head	367		
	15	5.9 Constar	nt density flow in a deformable, homogeneous porous medium	367		
	15	5.10 Steady-	state flow with constant ρ^w and K	368		
	15	5.11 Summa	ry of main points for flow equations	369		
	15	5.12 Porous	medium-scale convective-dispersive equation	370		
	15	5.13 Conclus	sion	373		
	15	5.14 Problem	ns	374		
	15	5.15 Append	lix: anisotropic hydraulic conductivity	377		
	16 Ad	lvection–Disp	ersion Equation Solution	379		
	16	6.1 Introdu	ction	379		
	16	5.2 Simplif	ied advection-dispersion equation	380		
	16	5.3 One-dir	nensional formulation	380		
	16	6.4 Discrete	e form of the advection-dispersion equation	381		
		16.4.1	Dimensionless form of the advection-dispersion			
			equation	381		
		16.4.2	Discrete approximations of derivatives	382		
		16.4.3	One-dimensional discrete advection-dispersion			
			equation	384		
	16	6.5 Two-di	mensional formulation	388		
		16.5.1	Construction of a difference equation	389		

Stability Revisited	
17.1 Introduction	398
17.2 Lake/CSTR simulation	399
17.2.1 Discrete form and stability	400
17.3 First example of lake operation	401
17.4 Second example of lake operation	403
17.5 Third example of lake operation	405

17

16.5.2

16.6 Conclusion

16.7 Problems

Steady-state case

391

394

395

xiv		Contents			
	17.6	Conclusion		406	
	17.7	Problems		407	
	References	š		408	
	Index			420	

Figures

2.1	Plot of available data for January rainfall in Grangeville, Idaho, from 1950	10
2.1		19
3.1	Descent from perfect determinism through statistical uncertainty, scenario	27
2.2	uncertainty, and recognized ignorance to total ignorance (after [217]).	27
3.2	Schematic of model types and subtypes (after [105]). The shaded box is	20
2.2	the primary focus of this book.	30
3.3	Conceptual model of the hydrologic cycle (after [32]). water stored in	
	each of the four elements has units of 10^{-2} kg. Flows between elements	22
2.4	nave units of 10 ⁻⁴ kg/yr.	33
5.4 2.5	Excessively simplified, inough commonly employed, modeling strategy.	41
5.5 2.6	Concentual model of Mathematical Model have of Figure 2.5 with	43
5.0	conceptual model of Mathematical Model box of Figure 5.5 with	15
37	Sublements indicated.	4J 50
3.7	Conceptual model of key elements and actions of the modeling process	50
5.0	based on the list in Section 3.5. Unnumbered hoves are all part of item 0	
	the critical review	52
41	Normalized mass density as a function of the averaging volume size	70
1 5 1	I ake Michigan considered as a single system in (a) and subdivided into	70
5.1	two systems in (b)	86
52	Spreading of contaminant by movement of lower plate produces apparent	00
0.2	dispersion over the system cross section: (a) contaminated fluid on left.	
	pure fluid on right: (b) distribution of contaminated and uncontaminated	
	fluid after translation of lower plate: (c) average concentration of	
	contaminant over cross section after translation of lower plate.	95
5.3	Contamination flows in from the left. At point A, the flow splits into two	
	parts that come together at point B. The contamination concentrations at	
	point B are determined in the problems.	100
6.1	Moody diagram plot of Eq. (6.80) (after Glasgow College of Nautical	
	Studies, www.asabe.org/media/147982/pipefric.pdf).	122
7.1	Solutions to the discrete logistic equation (dots), Eq. (7.20), and to the	
	differential logistic equation given as Eq. (7.24) (curve) with $p_0 = 0.1$,	
	$r\Delta t = 0.5$. For these parameter values, both solutions are monotonic.	141
7.2	Solutions to the discrete logistic equation (dots), Eq. (7.20), and to the	
	differential logistic equation given as Eq. (7.24) (curve) with $p_0 = 0.1$,	

XV

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter

xvi	List of Figures	
	$r\Delta t = 2.0$. For these parameter values, the discrete solution is oscillatory	
	while the continuous solution is monotonic.	141
7	Plot of the function f in Eq. (7.29) vs. p for various values of the parameter	
	ϵ . When $\epsilon = 1$, the logistic model results. When $\epsilon \to \infty$, the Gompertz	
	model is obtained.	143
7	7.4 Equilibrium dimensionless yield vs. equilibrium dimensionless	
	populations for Gompertz and logistic models with harvesting.	146
8	3.1 The volume in (a) is composed of two juxtaposed volumes with typical	
	unit normal vectors to each volume indicated along with the fact that the	
	outward unit normals are collinear but in opposite directions at a common	
	surface. The volume in (b) depicts outwardly directed normal vectors at	
	two points on the surface.	183
8	3.2 Cuboidal volume with side lengths Δx , Δy , and Δz .	186
8	Annular volume with side lengths Δr , Δz , $r\Delta \theta$, and $(r + \Delta r) \Delta \theta$.	188
ç	D.1 Juxtaposition of small domains. (a) Six boxes with fluxes at boundary of	
	each box indicated. (b) Composite box such that only external boundary	
	fluxes are considered because flux dotted with outward normal at common	
	surfaces cancel.	196
1	(a) Global volume; (b) Subdivided volume for description of some	
	variability within the volume and flow between subregions; (c) Further	
	subdivided volume. In the limit of subdivision into very small study	
	volumes, a continuous description of the variability of a quantity of	
	interest is obtained.	217
1	10.2 Discretization of Gulf of Mexico into 33 272 triangles with 17 306 nodes.	
	Range of node spacing is from approximately 1 to 125 km [93].	218
1	10.3 Well-mixed CSTR with a single inflow and a single outflow.	225
1	11.1 Solution given by Eq. (11.72) for various values of $\kappa = kV/Q$.	260
1	2.1 Elemental volume with side lengths Δx , Δy , and Δz with elements of the	
	stress tensor depicted.	281
1	2.2 Dam at one end of a reservoir.	299
1	2.3 Treatment tank of cross-sectional area A with outflow orifice of	
	cross-section a . The volumetric inflow is Q , volumetric outflow is q , and	
	the height of fluid in the tank is <i>H</i> . The fluid density, ρ , is constant.	299
1	14.1 Diagram of a one-dimensional river with flow parallel to the river bed: (a)	
	side view with x direction parallel to river bed, control volume indicated	
	in grey; (b) front view; (c) top view.	316
1	14.2 Diagram of a section of estuary for derivation of a vertically averaged	
	model. Depth of flow is $H = \zeta + h$. Averaging domain is of height H and	
	cross-section $\Delta x \Delta y$.	339
1	5.1 Sketch of a spherical averaging region within an aquifer. Below the land	
	surface is the unsaturated zone with water and air fluid phases. Below	
	the water table is a saturated region where water is the only fluid present.	
	Then, below the unconfined aquifer is the aquifer confined above and	
	below. The REV is the spherical region Ω_{REV} with volume v_{REV} . The	

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter <u>More Information</u>

> xvii List of Figures region occupied by the fluid is $\Omega_{\text{REV}w}$ with volume $v_{\text{REV}w}$. The region occupied by the solids is indicated as the dark grains and has volume $v_{\text{REV}s}$ such that $v_{\text{REV}} = v_{\text{REV}w} + v_{\text{REV}s}$. The part of the external boundary of the REV that intersects fluid is designated $\Gamma_{\text{REV}w}$, and the internal boundary between the fluid and solid is designated Γ_{REVi} . 353 15.2 Experimental setup of Henry Darcy. 363 15.3 Linear relation between q and $\Delta h/L$ based on Darcy's experiment (data from [24]). 363 16.1 Nodes involved in the approximation of Eq. (16.8) in the vicinity of the unknown solution $C(\tau_{k+1/2}, \xi_j)$. 385 16.2 Computational molecule in two spatial dimensions and time centered 389 around $t_{k+1/2}$, x_i , y_j . Computational molecule in two spatial dimensions for use in a steady-state 16.3 392 simulation centered around x_i , y_i . 16.4 Discretized region for example problem $\nabla^2 \omega = 0$. Domain is the rectangle $0 \le x \le L$, $0 \le y \le B$. Specified function for ω at x = 0 and x = L; zero normal gradient at y = 0 and y = B. 393 16.5 Computational molecule at boundary of simulation region where normal gradient is specified. 393 17.1 Well-mixed lake to be modeled as a stirred tank. 399

Preface

The possibility of using a computer to predict the physical, chemical, and biological responses of environmental systems is an exciting notion that attracts student interest. The elements and processes of environmental modeling, however, are in many ways foreign to the kind of thinking that young investigators exercise during their educational experience. Modeling is inexact, requires physical insight, makes use of mathematics that expresses physical concepts, and is subject to revision and continuing study in light of data and observed system behavior. In developing their scientific background, students often see solving problems of physics as grabbing the right equation for the job. Solution of mathematical equations likewise involves identifying and applying the right techniques. Mathematics and physics books for undergraduates only present problems that are fully specified, can be solved, and that have a single answer. Many of those answers are given in the back of the book. Thus work on a problem is reduced to shooting for a known target solution or at least finding the direct path to the only possible answer. Environmental questions, on the other hand, involve problems that an investigator must define in terms of their component elements to find answers that were previously unknown. Formulation of equations requires information about time and spatial scales. Information that would make even simple models solvable is often lacking. The absence of an a priori answer requires that the modeler not only propose a model and its results but also be the harshest critic of the inadequacies of the model. This dual role requires that the modeler be well versed in fundamental processes and in how descriptions of those fundamental processes can be applied to particular environmental problems of interest. Learning to do this requires much more than a semester or a single book of exposure; it requires experience, success, failure, time, insight, and patience.

This book is intended to provide an introduction to environmental modeling; it is not a book that transforms an individual into an environmental modeler. Those who work through this material, appreciate the thought processes, gain some grasp of the principles involved, and develop fundamental understanding will have been introduced to environmental modeling. Hopefully, they will appreciate the hard work that lies ahead to be able to model environmental systems. The references provided are typically more advanced than the material in this book, with the thought being that the introduction here is adequate to provide an entrée into the more specialized and advanced information. This book, although a modeling book, does not make the leap to implementing either new or existing computer codes. Using codes to obtain collections of numbers and attractive graphics can be hazardous without understanding the principles incorporated into the code, the limitations of the code, the meaning and limitations of the numbers calculated, and ways to make a code

xix

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter <u>More Information</u>

Preface

particularly adapted to a setting of interest. Such activity should only be undertaken after forewarning and gaining an appreciation for the fact that the ability to hit the enter key such that a code executes to expected completion is a minute part of successful modeling. Exercising available codes to good effect is not an introductory element of environmental modeling, and writing new codes is also a process that often requires advanced computer science skills.

This book covers the thought processes for modeling, as well as some of the fundamental principles that enable one to model physical processes from a mechanistic perspective. Chapter 1 presents the perspective that modeling requires thinking rather than rote repetition of information. Chapter 2 supports the idea that data alone does not describe a system, but data in light of the context in which the data is collected can describe a system. Chapter 3 encourages examination of data to answer a question in light of a framework, but cautions that the examination is almost never exact so that sources of error must be appreciated and controlled. Chapter 4 stresses the importance of length and time scales in formulating a description of a problem of interest. An overview of the mechanisms that must be operative for a system to undergo change is presented. The mechanisms in this chapter are subsequently incorporated into statements of how systems change. Chapter 6 on dimensional analysis points to the importance of dimensional homogeneity in equation formulation and also illustrates the use of the Buckingham Pi theorem to aid in efficient description of system behavior.

Because algebraic, discrete differences or changes are intuitively easier to understand than differential changes, Chapter 7 formulates some discrete models and discusses their solution. In addition, the effects of numerical instability in solving the equations are demonstrated. Mathematically, Chapter 8 is a review of elements of calculus that a student should have encountered previously. However, the material is presented from the perspective of the relations being physical as well as mathematical statements. This approach is continued in Chapter 9 where integral theorems are introduced that enable equation forms to be rearranged and, in particular, facilitate the transition of the statement of an equation for a finite-sized volume to one that is infinitesimal. Chapters 10 through 13 develop the conservation equations for mass, chemical species, momentum, and energy as the fundamental principles that describe how systems must behave. Both point and integral forms of these equations are encountered. In Chapter 14, approaches are employed for modeling a system in a reduced number of spatial coordinates. As introduced in calculus courses, not considering variability in a coordinate direction usually is achieved by dropping the derivatives in that direction. Here, we emphasize that to ensure conservation properties are honored, variation in a coordinate direction is accomplished by integration over that coordinate. Included in this chapter are the shallow-water equations and the St. Venant equations for channel flow. In Chapter 15, we develop equations that are employed in modeling of porous media. The prime intent is to show that the relevant equations are based on the fundamental conservation principles formulated at a different scale. At this point, equations have been developed for a wide array of systems. Chapter 16 introduces the idea of solving these equations using a numerical method. The presentation is for a simple contaminant transport problem with the objective being to illustrate the thought processes behind

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter More Information

ххі

Preface

numerical algorithms that can serve as a springboard to the study of more complex algorithms and processes. Chapter 17 revisits stability considerations for numerical solution of discrete equations. The objective is to illustrate that instabilities, which sometimes seem to be surprising mathematical artifacts, can be thought of as manifestations of improperly operating a system.

In all chapters, questions are inserted within the text and problems are provided at the end of the chapters. The questions are relatively simple and are inserted strategically at places in the text as aids in cementing down processes or concepts just introduced. In a sense, they are speed bumps that encourage a reader to make sure he or she understands what has been written before going on to the next concept. These questions also provide a basis for productive discussions. The problems at the end of the chapter are more comprehensive. They make use of material in the preceding chapter and also integrate material presented previously in the book. The problems do not seek regurgitation of material presented but ask the student to be creative in bringing the material to bear on a specific scenario. Answers to the problems are not necessarily unique; problems may require that some additional information be added so that the problem is completely defined. Work on the problems by groups rather than individuals can be beneficial in some cases, as different perspectives will enrich formulation of problem solutions.

This book is based in part on a course on environmental modeling offered through the Curriculum for the Environment and Ecology (CEE) at the University of North Carolina in Chapel Hill. The authors are grateful to those discerning people who have provided them with insights over the years on modeling and/or on education in general, especially George F. Pinder (University of Vermont), Cass T. Miller (University of North Carolina at Chapel Hill), Randall L. Kolar (University of Oklahoma), Stephen Whitaker (University of California at Davis), Mohamed S. B. H. Ghidaoui (Hong Kong University of Science and Technology), Monica Martinez-Canales (Intel), Herbie Lee (University of California, Santa Cruz), and Robert B. Gramacy (Virginia Tech). The outstanding students who have encountered this material in course offerings have added many insights and much enthusiasm. Their contributions in providing perspective on this material and in confirming its importance to their education has inspired some of the approaches employed here. We are grateful to Gregory Gangi, who encouraged such excellent students to engage with environmental modeling, and to Jaye E. Cable whose educational leadership fostered this course under the CEE umbrella. Two of the students who took the course, Elizabeth C. Christenson and Jillian L. Simmerman, deserve particular mention because their involvement, as well as subsequent contributions as teaching assistants, added greatly to the collaborative atmosphere of the course and to insights into the way material is structured and presented. We thank Matt Lloyd of Cambridge University Press for his unswerving support for this manuscript from the first time it was informally proposed through its completion. We greatly appreciate the efforts of Judith Shaw, who copy-edited the manuscript, and of Caroline Mowatt, who ushered this effort through to publication.

Over the years, many individuals have provided perspectives on the topics of this book through interactions with the authors in professional settings, books and manuscripts, informal conversations, and anonymous writings. Every effort has been made to acknowledge all sources, but the collection of perspectives through the years has resulted in the identity

Cambridge University Press 978-1-107-57169-3 — Introduction to Environmental Modeling William G. Gray , Genetha A. Gray Frontmatter <u>More Information</u>

xxii

Preface

of some sources fading from memory while their insights remain. We are grateful indeed to all parties who have informed us on elements of environmental modeling and regret any oversights in explicit recognition. We welcome comments and suggestions involving the use of this book and regret the shortcomings of our presentation.

The first author is ever grateful to and for Genny Gray who has provided generous, unflagging confidence in him throughout the years. Without her participation, the life of the first author would have been incomplete, and the life of the second author would have been impossible. The second author is grateful to Rob McGormley for his encouragement and support during the creation of this work. This collaboration has been a professional and personal activity that both authors recognize as a special privilege.