Neuropathologic and Neuroradiologic Correlations

A Differential Diagnostic Text and Atlas

Edited by

Murat Gokden
Department of Pathology, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA

Manoj Kumar
Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
To my wife Neriman and my son Alper for their love, support, and inspiration, and for their sacrifice during the preparation of this work.

To my parents Abdurrahman and Nebahat for the opportunities they have given me, and the wisdom they continue to provide.

To those who have taught me.

MG

To my parents, Punnu Ram and Reeta Devi, who have made me what I am, with their high principles and simple life, values of hard work, sincerity and perseverance.

To my lovely wife, Geeta, and my cutie pie Saanvi, whose love, support, and sacrifices are the pillars of my strength and motivation.

To all my teachers, friends, and colleagues, who have made me a better person, and continue to make me a better radiologist every day of my life.

And finally to all my patients, who have given me the chance to serve them, learn from them, and become a better physician.

MK
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Introduction to Neuroradiologic Techniques</td>
<td>1</td>
</tr>
<tr>
<td>Manoj Kumar</td>
<td></td>
</tr>
<tr>
<td>Neuroradiology: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Divisions of Neuroradiology</td>
<td>1</td>
</tr>
<tr>
<td>Basic Techniques/Modalities</td>
<td>1</td>
</tr>
<tr>
<td>Terminology</td>
<td>1</td>
</tr>
<tr>
<td>Plain Radiographs</td>
<td>2</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>2</td>
</tr>
<tr>
<td>Advantages</td>
<td>2</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>3</td>
</tr>
<tr>
<td>Computed Tomography</td>
<td>3</td>
</tr>
<tr>
<td>Special Techniques</td>
<td>3</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>5</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>7</td>
</tr>
<tr>
<td>Magnetic Resonance Imaging</td>
<td>7</td>
</tr>
<tr>
<td>Special Techniques</td>
<td>8</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>10</td>
</tr>
<tr>
<td>Contrast Administration</td>
<td>12</td>
</tr>
<tr>
<td>Angiography and Fluoroscopy</td>
<td>13</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>13</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>14</td>
</tr>
<tr>
<td>Ultrasonography</td>
<td>14</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>15</td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td>15</td>
</tr>
<tr>
<td>Applications in Neuroradiology</td>
<td>15</td>
</tr>
<tr>
<td>Lesion Description</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Introduction to Pathologic Techniques</td>
<td>23</td>
</tr>
<tr>
<td>Theodore Friedman and Mahtab Tehrani</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>Intraoperative Consultation</td>
<td>23</td>
</tr>
<tr>
<td>Specimen Processing</td>
<td>23</td>
</tr>
<tr>
<td>Histochemical Stains</td>
<td>23</td>
</tr>
<tr>
<td>Hematoxylin and Eosin</td>
<td>23</td>
</tr>
<tr>
<td>Bielschowsky and Gallyas Silver Stains</td>
<td>24</td>
</tr>
<tr>
<td>Luxol Fast Blue</td>
<td>24</td>
</tr>
<tr>
<td>Periodic Acid-Schiff (PAS)</td>
<td>24</td>
</tr>
<tr>
<td>Reticulin</td>
<td>24</td>
</tr>
<tr>
<td>Trichrome Stains</td>
<td>25</td>
</tr>
<tr>
<td>Elastic van Gieson</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meningeal Mass Lesions</td>
<td>40</td>
</tr>
<tr>
<td>Mahlon D. Johnson and Ali Hussain</td>
<td></td>
</tr>
<tr>
<td>Normal Meninges</td>
<td>40</td>
</tr>
<tr>
<td>Leptomeningeal Cysts</td>
<td>40</td>
</tr>
<tr>
<td>Meningiomas</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Stains for Microorganisms | 25 |
- Mucin Stains | 26 |
- Amyloid Stains | 26 |
- Immunohistochemical Stains | 26 |
- Glial Fibrillary Acidic Protein | 27 |
- Oligodendrocyte Transcription Factor | 27 |
- S100 Protein | 27 |
- Neuronal Markers | 28 |
- Isocitrate Dehydrogenase | 29 |
- p53 | 29 |
- α-Thalassemia/Mental Retardation Syndrome X-linked gene product (ATRX) | 30 |
- Ki-67 | 30 |
- Phosphohistone H3 | 30 |
- Epithelial Membrane Antigen | 30 |
- Macrophage and Microglia Markers | 30 |
- Hematolymphoid Markers | 31 |
- Muscle Markers | 31 |
- Vascular Markers | 31 |
- Inhibin | 31 |
- Markers for Pituitary Adenomas | 32 |
- Type IV Collagen | 32 |
- Integrase Interactor 1 (INI1) | 32 |
- Transhyretin (Prealbumin) | 32 |
- Metastatic Tumor Work-up | 32 |
- Melanocytic Markers | 33 |
- Molecular Testing | 33 |
- 1p and 19q Codeletion | 33 |
- MGMT | 35 |
- EGFR Amplification | 35 |
- MYC Protein | 35 |
- BRAF Oncogene | 35 |
- Electron Microscopy | 35 |
- Immunofluorescence Microscopy | 36 |
| | |
| | |
| | |
| | |
| | |
| | |
Contents

- **Atypical Clear Cell and Chordoid Meningiomas** (WHO Grade II) 47
- **Anaplastic, Papillary, and Rhabdoid Meningiomas** (WHO Grade III) 48
- **Mesenchymal Tumors** 48
 - Solitary Fibrous Tumors/Hemangiopericytomas 48
 - Leiomyomas and Leiomyosarcomas 50
 - Chondrosarcomas 51
 - Mesenchymal Chondrosarcomas 51
 - Gliosarcomas 51
- **Fibromas** 52
- **Melanocytic Tumors of the Meninges** 52
 - Melanocytomas 52
 - Melanomas 53
- **Vascular Tumors** 54
 - Capillary Hemangioblastomas 54
 - Hematopoietic Neoplasms 54
 - Lymphomas (WHO Grade IV) 54
 - Leukemias 57
 - Plasma-cell Neoplasms 58
- **Metastatic Tumors to the CNS** 58
- **Metastatic Carcinomas** 58

4 **Diffuse Leptomeningeal and Dural Lesions** 64
 - Ali Hussain and Mahlon D. Johnson

- **Anatomy of the Dura** 64
- **Infectious Meningitis** 64
 - Bacterial Meningitis 64
 - Mycobacterial Meningitis 67
 - Syphilitic Meningitis 68
 - Fungal Meningitis 68
 - Helminthic Meningitis 69
 - Viral Meningitis 69
- **Non-infectious Inflammatory Lesions** 69
 - Inflammatory Myofibroblastic Tumors 69
 - Inflammatory Pseudotumors and Plasma Cell Granulomas 70
- **Neurosarcoidosis** 72
- **Pachymeningitis** 73
- **Autoimmune Pachymeningitis** 74
- **Wegener's Granulomatosis** 74
- **Dural calcification** 75
- **Subdural Hematomas and Empyemas** 75
 - Acute Subdural Hematomas 75
 - Subacute Subdural Hematomas 75
 - Chronic Subdural Hematomas 75
 - Subdural Empyemas 77
 - Intracranial Hypotension 79

5 **Sellar and Suprasellar Region** 82
 - M. Beatriz S. Lopes and Prashant Raghavan
- **Normal Imaging Anatomy and Landmarks** 82
- **Tumors** 82
- **Suprasellar Region** 82
 - Hypothalamic Chiasmatic Gliomas 83
 - Craniopharyngiomas 84
 - Germ Cell Tumors 86
 - Langerhans Cell Histiocytosis 87
- **Sellar Region** 88
 - Pituitary Neuroendocrine Tumors 88
 - Pituitary Non-neuroendocrine Tumors 94
 - Cystic Tumors and Lesions 97
 - Other Tumors Involving the Sellar/Suprasellar Region 101
- **Inflammatory Disorders** 103
 - Primary Hypophysitis 103
 - Sarcoidosis 104
 - Wegener's Granulomatosis 105
 - Infectious Diseases 106
- **Vascular Lesions** 106
- **Congenital Lesions** 108
 - Hypothalamic Hamartomas 108
 - Empty Sella Syndrome 108
 - Pituitary Stalk Interruption Syndrome 109
 - Other Congenital Anomalies 110

6 **Pineal Region** 114
 - Melissa Gener, Stephen Kralik, and Eyas Hattab
- **Introduction** 114
- **Pineal Cysts** 115
- **Neuroepithelial Tumors** 117
 - Papillary Tumors of the Pineal Gland 117
 - Pineal Parenchymal Tumors 118
 - Pineocytomas 118
 - Pineal Parenchymal Tumors of Intermediate Differentiation 119
 - Pineoblastomas 121
- **Germ Cell Tumors** 121
 - Teratomas 122
 - Mature Teratomas 124
 - Immature Teratomas 124
 - Teratomas with Malignant Transformation 124
 - Germinomas 125
 - Other Germ Cell Tumors 128
 - Other Pineal Region Tumors 129

7 **Mass Effect and Edema** 131
 - Bret Evers, Travis Danielsen, and Manoj Kumar
- **Edema** 131
- **Types of Edema** 131
 - Vasogenic Edema 131
Contents

8 Cerebral Mass Lesions 151
Douglas C. Miller and Girish M. Fatterpekar

Intracerebral Lesions 151
Introduction 151
Classification of Lesions 151
Appearances 151
Locations 156
Non-enhancing Infiltrative Lesions 159
Diffuse Gliomas 159
Other Non-enhancing Infiltrative Lesions 173
Enhancing Infiltrative Lesions 175
High-grade Gliomas 175
Primitive Neuroectodermal Tumors (PNET) 179
Primary CNS Lymphomas 183
Metastatic Tumors 183
Non-neoplastic Lesions 189
High-grade Gliomas Versus Radiation Necrosis 192
Non-enhancing Discrete Lesions 197
Low-grade “Gliomas” 199
Non-neoplastic Discrete Mass Lesions 211
Enhancing Discrete Lesions 214
Differential Diagnosis with Non-neoplastic Lesions 218
Hemorrhagic Lesions 218

9 Cerebral Atrophy 222
Robert E. Mrak and Edgardo J. C. Angtuaco

The Role of Neuroimaging in Patients with Neurodegenerative Disorders 222
Cerebral Atrophy 223
Generalized Cerebral Atrophy 223
Normal Aging 223
Alzheimer Disease 224

Chronic Traumatic Encephalopathy 228
Dementia with Lewy Bodies 229
Vascular Dementia 231
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) 232
Creutzfeldt–Jakob Disease 235
Other Prion Diseases 236
Frontotemporal Atrophy: The Frontotemporal Lobar Degenerations 236
Pick Disease 237
Other Frontotemporal Lobar Degenerations with Tau Pathology 238
Other (Non-tau) Frontotemporal Lobar Degenerations 238
Other Patterns of Cerebral Atrophy 238
Corticobasal Degeneration 238
Deep Gray Matter 239
Progressive Supranuclear Palsy 239
Huntington Disease 240
Fatal Familial Insomnia 241
Neurodegeneration with Brain Iron Accumulation, Type 1 241
Calcification of the Basal Ganglia 242
Other Diseases of the Deep Gray Matter 242
Cerebellar and Brainstem Atrophy 242
Parkinson Disease 242
Multiple System Atrophy 243
Spinocerebellar Ataxias 246
Motor System 246

Ventricular System 249
Bruce C. Gilbert, Suash Sharma, Ramon Figueroa, and Amyn M. Rojiani

Normal Anatomy and Histology 249
Age-related Changes 251
Congenital/Developmental Lesions 251
Cavum Septi Pellucidi, Cavum Vergae, and Cavum Veli Interpositi 251
Choroid Plexus Cysts 251
Tuberous Sclerosis Complex 251
Nodular Subependymal Gray-matter Heterotopia 255
Schizencephalic Cysts 255
Porencephalic Cysts 255
Holoprosencephaly 257
Hydrocephalus 259
Dandy–Walker Malformation 262
Neoplasia 262
Third-ventricle Lesions 262
Colloid Cysts 262
Choroid Gliomas 265
Fourth-ventricle Lesions 265
Contents

Ependymomas 265
Subependymomas 266
Lateral Ventricles 267
Subependymal Giant Cell Astrocytomas 267
Central Neurocytomas 267
Choroid Plexus Neoplasms 270
Intraventricular Meningiomas 270
Local Extensions and Tumors Rarely Involving the Ventricles 272
Metastases 273
Infectious Processes of the Ventricle System 273
Congenital Intra-uterine Infections – TORCH 274
Acquired Intracranial Infections 275
Neurocysticercosis 275
Hemorrhagic/Vascular Lesions 277

11 White Matter 283
Suash Sharma, Brandi Villarreal, John Edry, Reed Murtagh, and Aymn M. Rojiani

Anatomy, Histology, and Embryology 283
Special Stains 283
Radiologic Considerations 283
Developmental Abnormalities 283
Agenesis of the Corpus Callosum 283
Dysmyelinating Disorders 285
Adrenoleukodystrophy 285
Metachromatic Leukodystrophy 285
Demyelinating Disorders 287
Multiple Sclerosis 287
MS Variants 291
Tumefactive Demyelinating Lesions or Demyelinating Pseudotumors 291
Balo's Concentric Sclerosis 293
Schilder's Disease (Myelinoclastic Diffuse Sclerosis) 293
Neuromyelitis Optica (Devic's Disease) 293
Acute Disseminated Encephalomyelopathy 298
Acute Hemorrhagic (Necrotizing) Leukoencephalopathy (Hurt Disease) 298
Infectious Diseases of the White Matter 298
Progressive Multifocal Leukoencephalopathy (PML) 298
Subacute Sclerosing Panencephalitis 301
Acquired Lesions 301
Central Pontine and Extra-pontine Myelinolysis (Osmotic Demyelination Syndrome) 301
Diffuse Axonal Injury 302
White-matter Changes in Systemic Disease 303
Hypertensive Changes 303
Pres/Hypertensive Encephalopathy 303
Chronic Hypertension 303
Susac Syndrome 306

CADASIL and CARASIL – Cerebral Autosomal (Dominant vs. Recessive) Arteriopathy with Subcortical Infarcts and Leukoencephalopathy 307
Vasculitis Related to Other Systemic Diseases 307
12 Cerebellum and Brainstem Mass Lesions 311
Raghu H. Ramakrishnaiah, Veena Rajaram, and Charles M. Glasier
Introduction 311
Juvenile Pilocytic Astrocytomas 312
Medulloblastomas 315
Ependymomas 318
Hemangioblastomas 321
Atypical Teratoid/Rhabdoid Tumors 322
Choroid Plexus Tumors 324
Brainstem Gliomas 329
Lhermitte–Duclos Disease 332
13 Malformations 338
Veena Rajaram and Korgun Koral
Introduction 338
Neural Tube Defects 338
Craniorachischisis, Anencephaly, and Exencephaly 339
Myelomeningoceles 340
Encephaloceles 340
Holoprosencephaly Sequelae and Commissural Defects 340
Alobar, Semilobar, and Lobar HPE 342
Agenesis of the Corpus Callosum 343
Septo-optic Dysplasia 344
Cell Migration and Localization Defects (Malformations of Cortical Development) 344
Lissencephaly 345
Polymicrogyria 346
Cortical Dysplasia 347
Neuroglial Heterotopia (Gray-matter Heterotopia) and Periventricular/Subependymal Nodular Heterotopia 348
Megalencephaly, Hemimegalencephaly, and Microcephaly 350
Posterior Fossa Malformations 350
Chiari Malformations 351
Dandy–Walker Malformation 353
Joubert Syndrome and Related Disorders 353
Cerebellar Hypoplasia 354
Rhombencephalosynapsis 354
Spinal Cord Malformations 356
Syringomyelia/Hydromyelia 356
Diplomyelia/Diastematomyelia 356
Caudal Agenesis/Caudal Regression Syndrome 357
Lipomyelomeningoceles and Lipomyeloschisis 359
Tethered Cord 360
Contents

16 Bone and Soft Tissues 402

Roopa Ram, Robin Elliott, and Kedar Jambhekar

Introduction 402

Benign Tumors 402

Aneurysmal Bone Cysts 402

Fibrous Dysplasia 403

Giant Cell Tumors 404

Hemangiomas 405

Langerhans Cell Histiocytosis 408

Osteoblastomas 408

Osteoid Osteomas 409

Osteochondromas 410

Malignant Tumors 411

Chordomas 411

Chondrosarcomas 412

Ewing Sarcomas 414

Lymphomas 415

Metastatic Disease 416

Osteosarcomas 418

Plasmacytomas 419

Infectious and Inflammatory Conditions 420

Acute Prevertebral Calcific Tendonitis 420

Vertebral Osteomyelitis and Discitis 421

Rheumatoid Arthritis 423

Tumor-like Conditions 424

Extramedullary Hematopoiesis 424

Fibromatosis 426

Paget’s Disease 428

Degenerative Disease 432

Osteopenia 434

Congenital Conditions 435

Neural Tube Defects 435

Osteopetrosis 435

Craniosynostosis 435

Secondary Craniosynostosis 437

Hereditary Cranio-facial Syndromes 438

Peripheral Nervous System 442

Shivani Ahlawat, Laura M. Fayad, and Fausto Rodriguez

Introduction 442

Non-neoplastic Tumor-like Lesions of Nerve 442

Benign Peripheral Nerve Sheath Tumors 443

Schwannomas 443

Neurofibromas 446

Intraneural Perineuromas 447

15 Spinal Cord 377

Sumit Singh and S. Humayun Gultekin

Introduction 377

Anatomy of the Spine 377

Imaging Techniques 377

Approach to Study of a Spinal Cord Lesion 377

Spinal Cord Tumors 377

Intramedullary Tumors 377

Astrocytomas 378

Pilocytic Astrocytomas (WHO Grade I) 378

Diffuse Astrocytomas 379

Ependymomas 380

Hemangioblastomas 381

Benign Intramedullary Lesions 383

Syringohydromyelia 383

Spinal Cord Contusion 383

Spinal Cord Infarction 384

Demyelination 386

Acute Transverse Myelitis 386

Multiple Sclerosis 387

Devic’s Disease 388

Spinal Cord Acute Disseminated Encephalomyelitis 389

Subacute Combined Degeneration 390

Guillain–Barré Syndrome 390

Intradural Extramedullary Lesions 391

Nerve Sheath Tumors 391

Meningiomas 393

Dermoid/Epidermoid Cysts 395

Neurenteric Cysts 395

Metastases 397

Epidural Abscesses 398

14 Cerebellopontine Angle 361

Rohan S. Samant and Murat Gokden

Introduction 361

Schwannomas 361

Other Neoplasms of the Cranial Nerves 362

Meningiomas 362

Metastases and Gliomas 367

Choroid Plexus Neoplasms 368

Endolymphatic Sac Tumors 368

Glomus Jugulare Tumors 369

Other Neoplasms 370

Cysts 371

Epidermoid and Dermoid Cysts 371

Arachnoid Cysts 371

Other Cystic Lesions 372

Malformative Processes 373

Dolichoectasia of the Basilar Artery and CPA Aneurysms 373

Infectious Processes 373

© 2021 Cambridge University Press

978-1-107-56725-2 — Neuropathologic and Neuroradiologic Correlations

Edited by Murat Gokden, Manoj Kumar

Frontmatter

More Information

www.cambridge.org

© in this web service Cambridge University Press
Contents

Hybrid Tumors 451

Malignant Peripheral Nerve Sheath Tumors 451
Malignant Neoplasms with Secondary Nerve Involvement 451

18 Skeletal Muscle 453
S. Humayun Gultekin and Brooke Beckett
Normal Muscle 453
Muscle Disease 454
Magnetic Resonance Imaging 454
Other Imaging Modalities 454
Pathologic Analysis of Muscle Disease 455
Specific Diseases 455
Inflammatory Myopathies 455
Idiopathic Inflammatory Myopathy 456
Denervation 456
Drug-induced Myopathy 458
Muscular Dystrophy 458
Fasciitis 460

19 Ophthalmic Diseases 462
Anat O. Stemmer-Rachamimov, Nora Laver, Declan McGuone, Baiju Shah, Gene M. Weinstein, and Harprit Singh Bedi
Introduction and Normal Anatomy 462
Orbit 462
Globe 462
Intraocular Tumors 463
Retinoblastomas 463
Uveal Malignant Melanomas 464
Orbital Inflammatory Lesions 465
Orbital Inflammatory Pseudotumor 466
Thyroid-related Orbitopathy 466
Orbital Fungal Infections 467
Orbital Benign and Cystic Lesions 468
Dermoid Cysts 468
Mucoceles 468
Cholesteatomas (Hematoceles, Hematomas) 469
Malignant Orbital Tumors 469
Orbital Rhabdomyosarcomas 469
Lymphomas 469
Vascular Lesions 471
Vascular Malformations 471
Infantile Capillary Hemangiomas 471
Optic Nerve Lesions 472
Optic Nerve Meningiomas 472
Optic Nerve Gliomas 472

Index 475
Contributors

Shivani Ahlawat, MD
Department of Radiology, Musculoskeletal Section
The Johns Hopkins University School of Medicine
Baltimore, MD
USA

Edgardo J. C. Angtuaco, MD
Department of Radiology
University of Arkansas for Medical Sciences
Little Rock, AR
USA

Brooke Beckett, MD
Department of Radiology
Oregon Health and Science University
Portland, OR
USA

Harprit Singh Bedi, MD
Department of Radiology
Tufts University Medical Center
Boston, MA
USA

Travis Danielsen, MD
Department of Pathology
University of Texas Southwestern Medical Center
Dallas, TX
USA

John Edry, MD
Department of Neurology
Georgia Regents University – Medical College of Georgia
Augusta, GA
USA

Robin Elliott, MD
Department of Pathology
University Hospitals Case Medical Center
Cleveland, OH
USA

Bret Evers, MD
Department of Pathology
University of Texas Southwestern Medical Center
Dallas, TX
USA

Girish M. Fatterpekar, MD
Department of Radiology
New York University School of Medicine
New York, NY
USA

Laura M. Fayad, MD
Department of Radiology
Johns Hopkins University
Baltimore, MD
USA

Ramon Figueroa, MD
Department of Radiology
Georgia Regents University – Medical College of Georgia
Augusta, GA
USA

Theodore Friedman, MD
Inova Pathology Institute
Pathology
Fairfax, VA
USA

Melissa Gener, MD
Department of Pathology
Children's Mercy
Hospitals & Clinics
Kansas City, MO
USA

Bruce C. Gilbert, MD
Department of Radiology
Georgia Regents University – Medical College of Georgia
Augusta, GA
USA
<table>
<thead>
<tr>
<th>List of contributors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles M. Glasier, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pediatric Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Arkansas for Medical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Rock, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Murat Gokden, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Arkansas for Medical Sciences and Arkansas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children's Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Rock, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Humayun Gultekin, MD, FCAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology and Laboratory Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Miami, Miller School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami, FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyas Hattab, MD, MBA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pathology and Laboratory Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Louisville School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisville, KY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ali Hussain, MB, ChB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Rochester Medical Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Medicine and Dentistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rochester, NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedar Jambhekar, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Arkansas for Medical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Rock, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahlon D. Johnson, MD, PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Rochester Medical Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School of Medicine and Dentistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rochester, NY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korgun Koral, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children's Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas, TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephen Kralik, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indianapolis, IN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manoj Kumar, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Arkansas for Medical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Rock, AR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nora Laver, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tufts University Medical Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Beatriz S. Lopes MD, PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Virginia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charlottesville, VA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Declan McGuone, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas C. Miller, MD, PhD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Missouri School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia, MO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert E. Mrak, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Toledo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toledo, OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reed Murtagh, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University Diagnostic Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of South Florida – Morsani School of Medicine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tampa, Florida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prashant Raghavan, MBBS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Radiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Maryland Medical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veena Rajaram, MD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department of Pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Texas Southwestern Medical Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallas, TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributor Name</td>
<td>Title</td>
<td>Department/Institution</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Roopa Ram, MD</td>
<td>MD</td>
<td>Department of Radiology, University of Arkansas for Medical Sciences</td>
</tr>
<tr>
<td>Raghu H. Ramakrishnaiah, MBBS, FRCR</td>
<td>Department of Pediatric Radiology and Neuro-Radiology, University of Arkansas for Medical Sciences</td>
<td>Little Rock, AR</td>
</tr>
<tr>
<td>Fausto Rodriguez, MD</td>
<td>MD</td>
<td>Department of Pathology, Johns Hopkins University</td>
</tr>
<tr>
<td>Amyn M. Rojiani, MD, PhD</td>
<td>MD</td>
<td>Department of Pathology, Georgia Regents University – Medical College of Georgia</td>
</tr>
<tr>
<td>Rohan S. Samant, MD</td>
<td>MD</td>
<td>Department of Radiology, University of Arkansas for Medical Sciences</td>
</tr>
<tr>
<td>Baiju Shah, MD</td>
<td>MD</td>
<td>Department of Radiology, Massachusetts General Hospital</td>
</tr>
<tr>
<td>Suash Sharma, MD</td>
<td>MD</td>
<td>Department of Pathology, Georgia Regents University – Medical College of Georgia</td>
</tr>
<tr>
<td>Sumit Singh, MD, FCAP</td>
<td>MD</td>
<td>Department of Neurology, Children's of Alabama, Birmingham, AL</td>
</tr>
<tr>
<td>Anat O. Stemmer-Rachamimov, MD</td>
<td>Department of Pathology</td>
<td>Massachusetts General Hospital</td>
</tr>
<tr>
<td>Mahtab Tehrani, MD</td>
<td>MD</td>
<td>Department of Pathology, Inova Fairfax Hospital</td>
</tr>
<tr>
<td>Brandi Villareal, MD</td>
<td>MD</td>
<td>Department of Neurology, Georgia Regents University – Medical College of Georgia</td>
</tr>
<tr>
<td>Gene M. Weinstein, MD</td>
<td>MD</td>
<td>Department of Radiology, Tufts University Medical Center</td>
</tr>
</tbody>
</table>
Preface

In the evaluation of the neurologic patient, neuroradiology and neuropathology play a central role not only in the accurate diagnosis of the disease process, but also in the guidance of both surgical and medical management and follow-up. In addition, they are paramount to the understanding of the disease process in a given patient, especially in this era of personalized medicine. Therefore, as an integral part of the neurologic and neurosurgical teams, neuroradiologists and neuropathologists provide a critical contribution to the diagnosis and care of their respective patients at all levels.

Especially in neuroradiology and neuropathology, a good understanding of the other enhances the diagnostic accuracy of each. While neuropathologists frequently refer to neuroradiologic findings in difficult cases as part of their work-up to generate differential diagnoses and elicit additional specifics to address, neuroradiologists also frequently follow the neuropathologic findings, both to increase their experience in difficult cases and to take the advantage of this knowledge in their follow-up studies. Likewise, our clinical colleagues certainly use the information from both specialties to diagnose and treat their patients, and build their experience with rare occurrences.

These and other factors, especially the need for clinical-radiologic-pathologic correlations in our joint educational conferences, tumor boards, teaching sessions, and one-on-one discussions between colleagues from these specialties, sparked the idea of preparing a book that will serve as a resource at multiple levels to a broad readership in neurologic specialties. Although neuroradiologic and neuropathologic features of diseases are included in many texts, there are only a few other major resources dedicated to their specifics. This book, however, has been designed with a more practical, real-life-like approach. It focuses on a closer integration of neuroradiologic and neuropathologic findings, and a regional organization of topics as one would encounter them when a patient presents. The classic demographic and pathogenetic information on specific diseases has been minimized, except when otherwise necessary, and emphasis has been placed on the explanation of findings and their correlation. An attempt to keep a balance between text and image content has been shown; nonetheless, both neuropathology and neuroradiology are image-based, visual specialties, and the necessity and temptation to include more images was hard to resist in order to keep that balance.

Due to the location-based approach in most chapters, some overlap of common entities encountered in multiple sites has been allowed to keep the continuity of the subject. In a few other instances, cross-referencing has been made.

In accord with and as an advantage of its design, this book can be used as a hands-on resource in the daily practice of all practitioners involved in the diseases of the nervous system and its related tissues, a systematic learning resource for the training of students, residents, and fellows in these specialties, and as a review book for board examination preparations in their respective areas. It is our greatest hope that the reader will find this book to be an invaluable resource for their patient care and educational needs, allowing neuroradiologists and neuropathologists to continue to contribute to the care of the neurologic patient in their unique ways, behind the scenes.

No medical service is an individual encounter, but requires a team of professionals to complement each other. Neither patient care nor this work would have been possible without the contribution of many individuals. First and foremost, we are indebted to our patients, whose diseases required our expertise, for allowing us to serve them in their struggle to overcome their diseases, and to build more knowledge and experience through them, so that we can improve the care of others who will come after them, and pass on what we know to other medical practitioners. We are deeply grateful to our many contributors, who agreed to share their expertise with us in this book, and donated their invaluable time and effort to make it happen. We thank our colleagues and trainees, both in our own specialties, as well as in others with whom we collaborate. We are especially grateful to the departments of neurosurgery and neurology, with whom we work closely on a day-to-day basis, for allowing us to participate in the care of their patients, for their collegiality, and for providing a stimulating academic environment, turning work into a joyful learning and teaching activity. We could not have turned what we knew into a book like this without the assistance and expertise of the professionals dedicated to publishing in Cambridge University Press (CUP), to Ms. Nisha Doshi, Senior Commissioning Editor, Medicine, Ms. Kirsten Bot and Mr. Neil Ryan, Content Managers, STM, and the copy-editor, Ms. Zoë G. Lewin, as well as all the individuals at CUP who contributed to the realization of this book.