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High-Order Perturbation of Surfaces Short

Course: Boundary Value Problems

David P. Nicholls

Abstract

In this lecture we introduce two classical High-Order Perturbation of Surfaces

(HOPS) computational schemes in the simplified context of elliptic boundary

value problems inspired by models in water waves. For the problem of computing

Dirichlet–Neumann Operators (DNOs) for Laplace’s equation, we outline Bruno

& Reitich’s method of Field Expansions (FE) and then describe Milder and Craig

& Sulem’s method of Operator Expansions (OE). We further show how these

algorithms can be extended to three dimensions and finite depth, and describe how

Padé approximation can be used as a method of numerical analytic continuation

to realize enhanced performance and applicability through a series of numerical

experiments.

1.1 Introduction

Calculus in general, and Partial Differential Equations (PDEs) in particular

have long been recognized as the most powerful and successful mathematical

modeling tool for engineering and science, and the study of surface water

waves is no exception. With the advent of the modern computer in the 1950s,

the possibility of numerical simulation of PDEs at last became a practical

reality. The last 50–60 years has seen an explosion in the development and

implementation of algorithms for this purpose, which are rapid, robust, and

highly accurate. Among the myriad choices are:

1. Finite Difference methods (e.g., [1–4]),

2. Finite Element methods (Continuous and Discontinuous) (e.g., [5–8]),

3. High-Order Spectral (Element) methods (e.g., [9–14]),

4. Boundary Integral/Element methods (e.g., [15, 16]).

The class of High-Order Perturbation of Surfaces (HOPS) methods we

describe here are a High-Order Spectral method, which is particularly well
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suited for PDEs posed on piecewise homogeneous domains. Such “layered

media” problems abound in the sciences, e.g., in

" free-surface fluid mechanics (e.g., the water wave problem),

" acoustic waves in piecewise constant density media,

" electromagnetic waves interacting with grating structures,

" elastic waves in sediment layers.

For such problems these HOPS methods can be

" highly accurate (error decaying exponentially as the number of degrees of

freedom increases),

" rapid (an order of magnitude fewer unknowns as compared with volumetric

formulations),

" robust (delivering accurate results for rather rough/large interface shapes).

However, these HOPS schemes are not competitive for problems with

inhomogeneous domains and/or “extreme” geometries.

In this lecture we discuss two classical HOPS methods for the solution

of such interfacial problems: Bruno & Reitich’s Field Expansions (FE)

method [17–24], and Milder and Craig & Sulem’s Operator Expansions (OE)

method [25–31]. In a future lecture we discuss a stabilized version of the

FE method (the Transformed Field Expansions – TFE–method) due to the

author and Reitich [32–34]. In addition to specifying the details of these two

algorithms (FE and OE) for a particular problem that arises in the study of

water waves, we also want to illustrate the accuracy, efficiency, speed, and

ease of implementation of HOPS schemes.

The rest of the lecture is organized as follows. In § 1.2 we recall the classical

water wave problem and how the Dirichlet–Neumann Operator (DNO) arises

as a fundamental object of study. In § 1.3 and § 1.4 we give the details

of the Field Expansions and Operator Expansions methods, respectively, as

applied to the problem of simulating the DNO. In § 1.5 we present results

of numerical simulations realized with a simple MATLAB implementation of

these recursions. In § 1.6 we discuss generalization of these algorithms to

three dimensions and finite depth. We close with a presentation of the Padé

approximation approach in § 1.7 to analytic continuation for these problems,

and the extremely beneficial effect this methodology can have on these HOPS

methods.

1.2 Water Waves and the Dirichlet–Neumann Operator

To fix on a problem we consider a classical water wave problem [35] which

models the evolution of the free surface of a deep, two-dimensional, ideal fluid
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under the influence of gravity. The widely accepted model [35] is

�× = 0 y < ·(x, t),

"y× ³ 0 y ³ 2>,

"t· + "x·("x×) = "y×, y = ·(x, t),

"t× + (1/2)'× · '× + Þg· = 0 y = ·(x, t).

In these ×(x,y, t) is the velocity potential (�u = '×), ·(x, t) is the air–water

interface, and Þg is the gravitational constant.

At the center of this problem is the solution of the elliptic Boundary Value

Problem (BVP)

�v = 0 y < g(x),

"yv ³ 0 y ³ 2>,

v = ¿ y = g(x).

In particular, upon solving this problem, the DNO

G(g)[¿ ] :=
�

"yv2 ("xg)"xv

�

y=g(x)
,

allows one to recast the water wave problem as [29, 36]

"t· = G(·)¿ ,

"t¿ = 2Þg· 2 A(·)B(·,¿),

where

A =
�

2
�

1 + ("x·)2
��21

,

B = ("x¿)2 2 (G(·)¿)2 2 2("x·)("x¿)(G(·)¿).

For many problems of practical interest it suffices to consider the classical

periodic boundary conditions, e.g.,

v(x + L,y) = v(x,y), g(x + L) = g(x), L = 2Ã ,

which permits us to express functions in terms of their Fourier Series

g(x) =

>
�

p=2>

Ægpeipx, Ægp =
1

2Ã

� 2Ã

0

g(s)e2ips ds.
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Thus, from here we focus on the BVP

�v = 0 y < g(x), (1.2.1a)

"yv ³ 0 y ³ 2>, (1.2.1b)

v = ¿ y = g(x), (1.2.1c)

v(x + 2Ã ,y) = v(x,y), (1.2.1d)

and the DNO it generates.

1.3 The Method of Field Expansions

Our first HOPS approach for approximating DNOs solves the BVP, (1.2.1),

directly. Its origins can be found in the work of Rayleigh [37] and Rice [38].

The first high-order implementation is due to Bruno & Reitich [18–20] and

was originally denoted the “method of Variation of Boundaries.” To prevent

confusion with subsequent methods it was later renamed the method of Field

Expansions (FE). The “key” to the method is the realization that interior to the

domain (i.e., y < 2|g|>) the solution of Laplace’s equation by separation of

variables is

v(x,y) =

>
�

p=2>

ape|p|yeipx. (1.3.1)

This HOPS approach uses the fact that, for a sufficiently smooth boundary

perturbation g(x) = ·f (x), the field, v = v(x,y;·), depends analytically upon ·.

Assume that the interface is shaped by g(x) = ·f (x), where f > O (1) and,

initially, · " 1. We will be able to show a posteriori that v depends analytically

upon · so that

v = v(x,y;·) =

>
�

n=0

vn(x,y)·n.

Inserting this expansion into the governing equations, (1.2.1), and equating at

orders O (·n) yields

�vn = 0 y < 0, (1.3.2a)

"yvn ³ 0 y ³ 2>, (1.3.2b)

vn = Qn y = 0, (1.3.2c)

vn(x + 2Ã ,y) = vn(x,y). (1.3.2d)

The crucial term is the boundary inhomogeneity

Qn(x) = ·n,0¿(x)2

n21
�

m=0

Fn2m(x) "n2m
y vm(x,0),
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where Fm(x) := f m(x)

m!
and ·n,m is the Kronecker delta. This form comes from

the expansion

v(x,·f ;·) =

>
�

n=0

vn(x,·f )·n =

>
�

n=0

·n

n
�

m=0

Fn2m(x) "n2m
y vm(x,0).

Bounded, periodic solutions of Laplace’s equation can be expressed as

vn(x,y) =

>
�

p=2>

an,pe|p|yeipx. (1.3.3)

Inserting this form into the surface boundary condition, (1.3.2c), delivers

>
�

p=2>

an,peipx =

>
�

p=2>

ÆQn,peipx,

where, since

e|p|·f =

>
�

m=0

·mFm |p|m ,

we have

Qn(x) = ·n,0

>
�

p=2>

Æ¿peipx 2

n21
�

m=0

Fn2m(x)

>
�

p=2>

|p|n2m am,peipx.

Summarizing, we have the FE Recursions

an,p = ·n,0
Æ¿p 2

n21
�

m=0

>
�

q=2>

ÆFn2m,p2q |q|n2m am,q. (1.3.4)

The FE recursions deliver the solution everywhere well inside the problem

domain. However, two questions immediately arise: Is the expansion

v(x,y) =

>
�

p=2>

ape|p|yeipx

valid at the boundary? Is this expansion valid near the boundary? For rigorous

answers to these questions we refer to Bruno & Reitich’s first contribution [17],

the work of the author and Reitich [32–34], and the third lecture in this series.

Assuming for the moment that there is some validity at the boundary, recall

that we wish to compute the Neumann data

¿(x) =
�

"yv2 ("xg)"xv

�

y=g(x)
.

Expanding in ·

>
�

n=0

¿n(x)·
n =

>
�

n=0

�

"yvn(x,·f )2 ·("xf )"xvn(x,·f )
�

·n,

www.cambridge.org/9781107565562
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-56556-2 — Lectures on the Theory of Water Waves
Edited by Thomas J. Bridges, Mark D. Groves, David P. Nicholls
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 David P. Nicholls

and equating at order O (·n) gives

¿n(x) =

n
�

m=0

Fn2m"n+12m
y vm(x,0)2

n21
�

m=0

("xf )Fn212m"x"
n212m
y vm(x,0).

At each wavenumber we have

Æ¿n,p =

n
�

m=0

>
�

q=2>

ÆFn2m,p2q |q|n+12m am,q

2

n21
�

m=0

>
�

q=2>

ÆF�
n212m,p2q(iq) |q|n212m am,q, (1.3.5)

where F�
m(x) := ("xf )Fm(x). Together, formulas (1.3.4) and (1.3.5) can be

implemented in a high-level computing language to deliver a fast and accurate

method for simulating the action of the DNO, G : ¿ ³ ¿.

1.4 The Method of Operator Expansions

The second HOPS approach we investigate considers the DNO alone without

explicit reference to the underlying field equations. For this reason the method

has been termed the method of Operator Expansions (OE). The first high-order

implementation for electromagnetics (the Helmholtz equation) is due to Milder

[25, 26] and Milder & Sharp [27, 28]. The first high-order implementation for

water waves (the Laplace equation) is due to Craig & Sulem [29]. Once again,

we use, in a fundamental way, the representation, (1.3.1),

v(x,y) =

>
�

p=2>

ape|p|yeipx.

This HOPS method uses the fact that, for a boundary perturbation g(x)= ·f (x),

the DNO, G = G(·f ), depends analytically upon ·.

Again, assume that the interface is shaped by g(x) = ·f (x), where f >O (1)

and, initially, · " 1. We now focus on the definition of the DNO, G,

G(g)[¿ ] = ¿,

and seek the action of G on a basis function, exp(ipx). To achieve this we use

a bounded, periodic solution of Laplace’s equation

vp(x,y) := e|p|yeipx. (1.4.1)

Inserting the solution vp(x,y) into the definition of the DNO gives

G(g)[vp(x,g(x))] =
�

"yvp 2 ("xg)"xvp

�

y=g(x)
.
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We assume that everything is analytic in · and expand
�

>
�

n=0

·nGn(f )

��

>
�

m=0

·mFm |p|m eipx

�

=

>
�

n=0

·nFn |p|n+1 eipx

2 ·("xf )

>
�

n=0

·nFn(ip) |p|n eipx.

At O
�

·0
�

this reads

G0

�

eipx
�

= |p|eipx,

so that we can conclude that

G0[¿ ] = G0

�

>
�

p=2>

Æ¿peipx

�

=

>
�

p=2>

Æ¿pG0

�

eipx
�

=

>
�

p=2>

|p| Æ¿peipx =: |D|¿ ,

which defines the order-one Fourier multiplier |D|. At order O (·n), n > 0, we

find

n
�

m=0

Gm(f )
�

Fn2m |p|n2m eipx
�

= Fn |p|n+1 eipx 2 ("xf )Fn21(ip) |p|n21 eipx,

which we can write as

Gn(f )
�

eipx
�

= Fn |p|n+1 eipx 2 ("xf )Fn21(ip) |p|n21 eipx

2

n21
�

m=0

Gm(f )
�

Fn2m |p|n2m eipx
�

.

or, using "xeipx = (ip)eipx,

Gn(f )
�

eipx
�

= Fn |D|n+1 eipx 2 ("xf )Fn21"x |D|n21 eipx

2

n21
�

m=0

Gm(f )
�

Fn2m |D|n2m eipx
�

.

Since (ip)2 = 2|p|2 we deduce that |D|2 = 2"2
x and we arrive at

Gn(f )
�

eipx
�

=
�

2Fn"
2
x 2 ("xf )Fn21"x

�

|D|n21 eipx

2

n21
�

m=0

Gm(f )
�

Fn2m |D|n2m eipx
�

.

Next, since

"x [Fn"xJ] = Fn"
2
x J + ("xf )Fn21"xJ,

we have

Gn(f )
�

eipx
�

= 2"xFn"x |D|n21 eipx 2

n21
�

m=0

Gm(f )
�

Fn2m |D|n2m eipx
�

.
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As we have the “action” of Gn on any complex exponential exp(ipx), we write

down the Slow OE Recursions

Gn(f ) [¿ ] = 2"xFn"x |D|n21 ¿ 2

n21
�

m=0

Gm(f )
�

Fn2m |D|n2m ¿
�

, (1.4.2)

for any function

¿(x) =

>
�

p=2>

Æ¿peipx.

So, what is wrong with this set of recursions, (1.4.2)? To compute Gn

one must evaluate Gn21, which requires the application of Gn22, etc. Since

the argument of Gm changes as m changes, these cannot be precomputed

and stored. Therefore, a naive implementation will require time proportional

to O (n!). One can improve this by storing Gm as an operator (a matrix in

finite dimensional space), and thus computing Gn requires time proportional

to O
�

nN2
x

�

. Happily we can do even better by using the self-adjointness

properties of the DNO.

It can be shown that the DNO, G, and all of its Taylor series terms Gn are

self-adjoint: G7 = G and G7
n = Gn. This can be used to advantage by recalling

that (AB)7 = B7A7, "7
x = 2"x, and F7

n = Fn. Now, one takes the adjoint of Gn

to realize the Fast OE Recursions

Gn(f ) [¿ ] = G7
n(f ) [¿ ] = 2|D|n21 "xFn"x¿ 2

n21
�

m=0

|D|n2m Fn2mGm(f ) [¿ ] .

(1.4.3)

As above, formula (1.4.3) can be implemented on a computer to deliver an

alternative, fast and accurate method for simulating the action of the DNO,

G : ¿ ³ ¿.

1.5 Numerical Tests

Now that we have two HOPS schemes for approximating DNOs, we can test

them and compare their performance. For this we make use of the following

exact solution. Recall the solution we used for the OE formula

vp(x,y) := e|p|yeipx.

If we choose a wavenumber, say p = r, and a profile f (x), for a given · > 0, it

is easy to see that the Dirichlet data

¿r(x;·) := vr(x,·f (x)) = e|r|·f (x)eirx
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generates Neumann data

¿r(x;·) :=
�

"yvr 2 ·("xf )"xvr

�

(x,·f (x))

= [|r|2 ·("xf )(ir)]e|r|·f (x)eirx.

Using this we can, with a Fourier spectral method in mind [9, 10], sample the

¿r at equally spaced points, appeal to either the FE or OE algorithms described

above, and compare our outputs to ¿r evaluated at these same gridpoints.

To be more specific, for either HOPS algorithm we choose a number of

equally spaced collocation points, Nx, and perturbation orders, N. For the

FE algorithm we utilize (1.3.4) to find approximations aNx
n,p for 2Nx/2 f p f

Nx/2 2 1 and 0 f n f N and form

¿
Nx,N
FE (x) :=

N
�

n=0

Nx/221
�

p=2Nx/2

aNx
n,peipx·n. (1.5.1)

All nonlinearities are approximated on the physical side using pointwise

multiplication, while Fourier multipliers are implemented in wavenumber

space by invoking a Fast Fourier Transform (FFT), applying the (diagonal)

Fourier multiplier operator, and then appealing to the inverse FFT algorithm.

N
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Relative Error versus N

OE (Taylor)

FE (Taylor)

Figure 1.1. Relative Error in FE and OE Algorithms versus Perturbation Order N

for Smooth Interface Configuration, (1.5.2), with Taylor Summation.
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In the same way, the OE method uses (1.4.3) to provide approximations ¿Nx
n,p,

which are then used to generate ¿
Nx,N
OE just as in (1.5.1).

We consider an example problem with geometric and numerical parameters

L = 2Ã , · = 0.02, f (x) = exp(cos(x)), Nx = 64, N = 16, (1.5.2)

and note that f is real analytic and that all of its derivatives are L = 2Ã–periodic

(so that its Fourier series decays exponentially fast). In Figure 1.1 we display

results of our numerical experiments with both the FE and OE algorithms as N

is increased from 0 to 16. Here we note the stable and rapid convergence one

can realize with these algorithms as the perturbation order N is increased.

1.6 Generalizations

Having described two rather simple and efficient algorithms for the simulation

of solutions to Laplace’s equation on a semi-infinite domain in two dimensions,

one can ask, are these algorithms restricted to this simple case? Happily we can

answer in the negative and now describe how to generalize the algorithms to

three dimensions (§ 1.6.1) and finite depth (§ 1.6.2). Other generalizations are

possible (e.g., to Helmholtz [39–41] and Maxwell [20, 43] equations, and the

equations of elasticity [42]) but would take us rather far afield.

1.6.1 Three Dimensions

A generalization of crucial importance is to the more realistic situation

of a genuinely three-dimensional fluid. In this case the air–fluid interface,

y = g(x) = g(x1,x2) is two-dimensional rather than one-dimensional. Such

a generalization for Boundary Integral/Element methods requires a new

formulation as the fundamental solution changes from

�2(r) = C2 ln(r),

to

�3(r) = C3r21.

One of the most appealing features of our HOPS methods is the trivial nature

of the changes required moving from two to three dimensions. This can be seen

by inspecting the solution of Laplace’s equation, c.f. (1.3.1),

v(x,y) =

>
�

p1=2>

>
�

p2=2>

ape|p|yeip·x, p = (p1,p2) * Z2.
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