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1 Source coding and hypothesis
testing; information measures

A (discrete) source is a sequence {X i }∞i=1 of random variables (RVs) taking values

in a finite set X called the source alphabet. If the X i ’s are independent and have the

same distribution P , we speak of a discrete memoryless source (DMS) with generic

distribution P .

A k-to-n binary block code is a pair of mappings

f : X
k → {0, 1}n, ϕ : {0, 1}n → X

k .

For a given source, the probability of error of the code ( f, ϕ) is

e( f, ϕ) � Pr{ϕ( f (X k)) �= X k},

where X k stands for the k-length initial string of the sequence {X i }∞i=1. We are interested

in finding codes with small ratio n/k and small probability of error. ➞ 1.1

More exactly, for every k let n(k, ε) be the smallest n for which there exists a k-to-n

binary block code satisfying e( f, ϕ) ≦ ε; we want to determine limk→∞
n(k,ε)

k
. ➞ 1.2

THEOREM 1.1 For a DMS with generic distribution P = {P(x) : x ∈ X}

lim
k→∞

n(k, ε)

k
= H(P) for every ε ∈ (0, 1), (1.1)

where H(P) � −
∑

x ∈ X

P(x) log P(x). ©

COROL L ARY 1.1

0 ≦ H(P) ≦ log |X|. (1.2)

©
Proof The existence of a k-to-n binary block code with e( f, ϕ) ≦ ε is equivalent to

the existence of a set A ⊂ X
k with Pk(A) ≧ 1 − ε, |A| ≦ 2n (let A be the set of those

sequences x ∈ X
k which are reproduced correctly, i.e., ϕ( f (x)) = x). Denote by s(k, ε)

the minimum cardinality of sets A ⊂ X
k with Pk(A) ≧ 1 − ε. It suffices to show that

lim
k→∞

1

k
log s(k, ε) = H(P) (ε ∈ (0, 1)). (1.3)

To this end, let B(k, δ) be the set of those sequences x ∈ X
k which have probability

exp{−k(H(P) + δ)} ≦ Pk(x) ≦ exp{−k(H(P) − δ)}.
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4 Information measures in simple coding problems

We first show that Pk(B(k, δ)) → 1 as k → ∞, for every δ > 0. In fact, consider the

real-valued RVs

Yi � − log P(X i );

these are well defined with probability 1 even if P(x) = 0 for some x ∈ X. The Yi ’s are

independent, identically distributed and have expectation H(P). Thus by the weak law

of large numbers

lim
k→∞

Pr

{
∣

∣

∣

∣

∣

1

k

k
∑

i=1

Yi − H(P)

∣

∣

∣

∣

∣

≦ δ

}

= 1 for every δ > 0.

As X k ∈ B(k, δ) iff | 1
k

∑k
i=1 Yi − H(P)| ≦ δ, the convergence relation means that

lim
k→∞

Pk(B(k, δ)) = 1 for every δ > 0, (1.4)

as claimed. The definition of B(k, δ) implies that

|B(k, δ)| ≦ exp{k(H(P)) + δ)}.

Thus (1.4) gives for every δ > 0

lim
k→∞

1

k
log s(k, ε) ≦ lim

k→∞

1

k
log |B(k, δ)| ≦ H(P) + δ. (1.5)

On the other hand, for every set A ⊂ X
k with Pk(A) ≧ 1 − ε, (1.4) implies

Pk(A ∩ B(k, δ)) ≧
1 − ε

2

for sufficiently large k. Hence, by the definition of B(k, δ),

|A| ≧ |A ∩ B(k, δ)| ≧
∑

x∈A ∩ B(k,δ)

Pk(x) exp{k(H(P) − δ)}

≧
1 − ε

2
exp{k(H(P) − δ)},

proving that for every δ > 0

lim
k→∞

1

k
log s(k, ε) ≧ H(P) − δ.

This and (1.5) establish (1.3). The corollary is immediate. �

For intuitive reasons expounded in the Introduction, the limit H(P) in Theorem 1.1 is

interpreted as a measure of the information content of (or the uncertainty about) a RV X

with distribution PX = P . It is called the entropy of the RV X or of the distribution P:

H(X) = H(P) � −
∑

x∈X

P(x) log P(x).

This definition is often referred to as Shannon’s formula.
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Source coding and hypothesis testing 5

The mathematical essence of Theorem 1.1 is formula (1.3). It gives the asymptotics

for the minimum size of sets of large probability in X
k . We now generalize (1.3) for the

case when the elements of X
k have unequal weights and the size of subsets is measured

by total weight rather than cardinality.

Let us be given a sequence of positive-valued “mass functions” M1(x), M2(x), . . .

on X and set

M(x) �
k

∏

i=1

Mi (xi ) for x = x1 · · · xk ∈ X
k .

For an arbitrary sequence of X-valued RVs {X i }∞i=1 consider the minimum of the

M-mass

M(A) �
∑

x ∈ A

M(x)

of those sets A ⊂ X
k which contain X k with high probability: let s(k, ε) denote the

minimum of M(A) for sets A ⊂ X
k of probability

PXk (A) ≧ 1 − ε.

The previous s(k, ε) is a special case obtained if all the functions Mi (x) are identically

equal to 1.

THEOREM 1.2 If the X i ’s are independent with distributions Pi � PXi
and

| log Mi (x)| ≦ c for every i and x ∈ X then, setting

Ek �
1

k

k
∑

i=1

∑

x ∈ X

Pi (x) log
Mi (x)

Pi (x)
,

we have for every 0 < ε < 1

lim
k→∞

(

1

k
log s(k, ε) − Ek

)

= 0.

More precisely, for every δ, ε ∈ (0, 1),
∣

∣

∣

∣

1

k
log s(k, ε) − Ek

∣

∣

∣

∣

≦ δ if k ≧ k0 = k0(|X|, c, ε, δ). (1.6)

©
Proof Consider the real-valued RVs

Yi � log
Mi (X i )

Pi (X i )
.

Since the Yi ’s are independent and E

(

1
k

k
∑

i=1

Yi

)

= Ek , Chebyshev’s inequality gives

for any δ′ > 0

Pr

{
∣

∣

∣

∣

∣

1

k

k
∑

i=1

Yi − Ek

∣

∣

∣

∣

∣

≧ δ′
}

≦
1

k2δ′2

k
∑

i=1

var (Yi ) ≦
1

kδ′2 max
i

var (Yi ).
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6 Information measures in simple coding problems

This means that for the set

B(k, δ′) �

{

x : x ∈ X
k, Ek − δ′ ≦

1

k
log

M(x)

PXk (x)
≦ Ek + δ′

}

we have

PXk (B(k, δ′)) ≧ 1 − ηk, where ηk �
1

kδ′2 max
i

var (Yi ).

Since by the definition of B(k, δ′)

M(B(k, δ′)) =
∑

x∈B(k,δ′)

M(x) ≦
∑

x∈B(k,δ′)

PXk (x) exp[k(Ek + δ′)] ≦ exp[k(Ek + δ′)],

it follows that

1

k
log s(k, ε) ≦

1

k
log M(B(k, δ′)) ≦ Ek + δ′ if ηk ≦ ε.

On the other hand, we have PXk (A ∩ B(k, δ′)) ≧ 1 − ε − ηk for any set A ⊂ X
k with

PXk (A) ≧ 1 − ε. Thus for every such A, again by the definition of B(k, δ′),

M(A) ≧ M(A ∩ B(k, δ′)) ≧
∑

x∈A∩B(k,δ′)

PXk (x) exp{k(Ek − δ′)}

≧ (1 − ε − ηk) exp[(Ek − δ′)],

implying

1

k
log s(k, ε) ≧

1

k
log(1 − ε − ηk) + Ek + δ′.

Setting δ′ � δ/2, these results imply (1.6) provided that

ηk =
4

kδ2
max

i
var (Yi ) ≦ ε and

1

k
log(1 − ε − ηk) ≧ −

δ

2
.

By the assumption | log Mi (x)| ≦ c, the last relations hold if k ≧ k0(|X|, c, ε, δ). �

An important corollary of Theorem 1.2 relates to testing statistical hypotheses. Sup-

pose that a probability distribution of interest for the statistician is given by either

P = {P(x) : x ∈ X} or Q = {Q(x) : x ∈ X}. She or he has to decide between P and

Q on the basis of a sample of size k, i.e., the result of k independent drawings from

the unknown distribution. A (non-randomized) test is characterized by a set A ⊂ X
k , in➞ 1.3

the sense that if the sample X1 . . . Xk belongs to A, the statistician accepts P and else

accepts Q. In most practical situations of this kind, the role of the two hypotheses is not

symmetric. It is customary to prescribe a bound ε for the tolerated probability of wrong

decision if P is the true distribution. Then the task is to minimize the probability of a

wrong decision if hypothesis Q is true. The latter minimum is➞ 1.4

β(k, ε) � min
A⊂Xk

Pk (A)≧1−ε

Qk(A).
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Source coding and hypothesis testing 7

COROL L ARY 1.2 For any 0 < ε < 1,

lim
k→∞

1

k
log β(k, ε) = −

∑

x∈X

P(x) log
P(x)

Q(x)
. ©

Proof If Q(x) > 0 for each x ∈ X, set Pi � P , Mi � Q in Theorem 1.2. If P(x) >

Q(x) = 0 for some x ∈ X, the P-probability of the set of all k-length sequences con-

taining this x tends to 1. This means that β(k, ε) = 0 for sufficiently large k, so that

both sides of the asserted equality are −∞. �

It follows from Corollary 1.2 that the sum on the right-hand side is non-negative.

It measures how much the distribution Q differs from P in the sense of statistical

distinguishability, and is called informational divergence or I-divergence:

D(P||Q) �
∑

x∈X

P(x) log
P(x)

Q(x)
.

Another common name given to this quantity is relative entropy. Intuitively, one can

say that the larger D(P||Q) is, the more information for discriminating between the

hypotheses P and Q can be obtained from one observation. Hence D(P||Q) is also

called the information for discrimination. The amount of information measured by

D(P||Q) is, however, conceptually different from entropy, since it has no immediate

coding interpretation.

On the space of infinite sequences of elements of X one can build up product measures

both from P and Q. If P �= Q, the two product measures are mutually orthogonal;

D(P||Q) is a (non-symmetric) measure of how fast their restrictions to k-length strings

approach orthogonality.

REMARK Both entropy and informational divergence have a form of expectation:

H(X) = E(− log P(X)), D(P||Q) = E log
P(X)

Q(X)
,

where X is a RV with distribution P . It is convenient to interpret − log P(x), resp.

log P(x)/Q(x), as a measure of the amount of information, resp. the weight of evidence

in favor of P against Q provided by a particular value x of X . These quantities are

important ingredients of the mathematical framework of information theory, but have

less direct operational meaning than their expectations. ©

The entropy of a pair of RVs (X, Y ) with finite ranges X and Y needs no new def-

inition, since the pair can be considered a single RV with range X × Y. For brevity,

instead of H((X, Y )) we shall write H(X, Y ); similar notation will be used for any

finite collection of RVs.

The intuitive interpretation of entropy suggests to consider as further information

measures certain expressions built up from entropies. The difference H(X, Y ) − H(X)

measures the additional amount of information provided by Y if X is already known.
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8 Information measures in simple coding problems

It is called the conditional entropy of Y given X :

H(Y |X) � H(X, Y ) − H(X).

Expressing the entropy difference by Shannon’s formula we obtain

H(Y |X) = −
∑

x∈X

∑

y∈Y

PXY (x, y) log
PXY (x, y)

PX (x)
=

∑

x∈X

PX (x)H(Y |X = x), (1.7)

where

H(Y |X = x)
△= −

∑

y∈Y

PY |X (y|x) log PY |X (y|x).

Thus H(Y |X) is the expectation of the entropy of the conditional distribution of Y

given X = x . This gives further support to the above intuitive interpretation of condi-

tional entropy. Intuition also suggests that the conditional entropy cannot exceed the

unconditional one.➞ 1.5

LE M M A 1.3

H(Y |X) ≦ H(Y ). ©

Proof

H(Y ) − H(Y |X) = H(Y ) − H(X, Y ) + H(X)

=
∑

x∈X

∑

y∈Y

PXY (x, y) log
PXY (x, y)

PX (x)PY (y)
= D(PXY ‖PX × PY ) ≧ 0. �

REMARK For certain values of x , H(Y |X = x) may be larger than H(Y ). ©

The entropy difference in the preceding proof measures the decrease of uncertainty

about Y caused by the knowledge of X . In other words, it is a measure of the amount

of information about Y contained in X . Note the remarkable fact that this difference is

symmetric in X and Y . It is called mutual information:

I (X ∧ Y )
△= H(Y ) − H(Y |X) = H(X) − H(X |Y ) = D(PXY ‖PX × PY ). (1.8)

Of course, the amount of information contained in X about itself is just the entropy:

I (X ∧ X) = H(X).

Mutual information is a measure of stochastic dependence of the RVs X and Y . The

fact that I (X ∧ Y ) equals the informational divergence of the joint distribution of X

and Y from what it would be if X and Y were independent reinforces this interpretation.

There is no compelling reason other than tradition to denote mutual information by a

different symbol than entropy. We keep this tradition, although our notation I (X ∧ Y )

differs slightly from the more common I (X; Y ).
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Source coding and hypothesis testing 9

Discussion

Theorem 1.1 says that the minimum number of binary digits needed – on average – to

represent one symbol of a DMS with generic distribution P equals the entropy H(P).

This fact – and similar ones discussed later on – are our basis for interpreting H(X)

as a measure of the amount of information contained in the RV X , resp. of the uncer-

tainty about this RV. In other words, in this book we adopt an operational or pragmatic

approach to the concept of information. Alternatively, one could start from the intu-

itive concept of information and set up certain postulates which an information measure

should fulfil. Some representative results of this axiomatic approach are treated in

Problems 1.11–1.14.

Our starting point, Theorem 1.1, has been proved here in the conceptually simplest

way. The key idea is that, for large k, all sequences in a subset of X
k with probability

close to 1, namely B(k, δ), have “nearly equal” probabilities in an exponential sense.

This proof easily extends also to non-DM cases (not in the scope of this book).

On the other hand, in order to treat DM models at depth, another – purely combina-

torial – approach will be more suitable. The preliminaries to this approach will be given

in Chapter 2.

Theorem 1.2 demonstrates the intrinsic relationship of the basic source coding and

hypothesis testing problems. The interplay of information theory and mathematical

statistics goes much further; its more substantial examples are beyond the scope of this

book. ©

Problems

1.1. (a) Check that the problem of determining limk→∞
1
k

n(k, ε) for a discrete

source is just the formal statement of the LMTR problem (see the Intro-

duction) for the given source and the binary noiseless channel, with the

probability of error fidelity criterion.

(b) Show that for a DMS and a noiseless channel with arbitrary alphabet size m

the LMTR is H(P)/ log m, where P is the generic distribution of the source.

1.2. Given an encoder f : X
k → {0, 1}n , show that the probability of error e( f, ϕ)

is minimized iff the decoder ϕ : {0, 1}n → X
k has the property that ϕ(y) is a

sequence of maximum probability among those x ∈ X
k for which f (x) = y.

1.3. A randomized test introduces a chance element into the decision between the

hypotheses P and Q in the sense that if the result of k successive drawings

is x ∈ X
k , one accepts the hypothesis P with probability π(x), say. Define

the analog of β(k, ε) for randomized tests and show that it still satisfies

Corollary 1.2.

1.4. (Neyman–Pearson lemma) Show that for any given bound 0 < ε < 1 on the

probability of wrong decision if P is true, the best randomized test is given by

π(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if Pk(x) > ck Qk(x)

γk if Pk(x) = ck Qk(x)

0 if Pk(x) < ck Qk(x),
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10 Information measures in simple coding problems

where ck and γk are appropriate constants. Observe that the case k = 1 contains

the general one, and there is no need to restrict attention to independent

drawings.

1.5. (a) Let {X i }∞i=1 be a sequence of independent RVs with common range X but

with arbitrary distributions. As in Theorem 1.1, denote by n(k, ε) the small-

est n for which there exists a k-to-n binary block code having probability of

error ≦ ε for the source {X i }∞i=1. Show that for every ε ∈ (0, 1) and δ > 0

∣

∣

∣

∣

∣

n(k, ε)

k
−

1

k

k
∑

i=1

H(X i )

∣

∣

∣

∣

∣

≦ δ if k ≧ k0(|X|, ε, δ).

Hint Use Theorem 1.2 with Mi (x) = 1.

(b) Let {(X i , Yi )}∞i=1 be a sequence of independent replicas of a pair of RVs

(X, Y ) and suppose that X k should be encoded and decoded in the knowl-

edge of Y k . Let ñ(k, ε) be the smallest n for which there exists an encoder

f : X
k × Y

k → {0, 1}n and a decoder ϕ : {0, 1}n × Y
k → X

k such that the

probability of error is Pr{ϕ( f (X k, Y k), Y k) �= X k} ≦ ε.

Show that

lim
k→∞

ñ(k, ε)

k
= H(X |Y ) for every ε ∈ (0, 1).

Hint Use part (a) for the conditional distributions of the X i ’s given various

realizations y of Y k .

1.6. (Random selection of codes) Let F(k, n) be the class of all mappings f : X
k →

{0, 1}n . Given a source {X i }∞i=1, consider the class of codes ( f, ϕ f ), where f

ranges over F(k, n) and ϕ f : {0, 1}n → X
k is defined so as to minimize e( f, ϕ);

see Problem 1.2. Show that for a DMS with generic distribution P we have

1

|F(k, n)|
∑

f ∈F(k,n)

e( f, ϕ f ) → 0,

if k and n tend to infinity, so that

inf
n

k
> H(P).

Hint Consider a random mapping F of X
k into {0, 1}n , assigning to each x ∈ X

k

one of the 2n binary sequences of length n with equal probabilities 2−n , indepen-

dently of each other and of the source RVs. Let Φ : {0, 1}n → X
k be the random

mapping taking the value ϕ f if F = f . Then

1

|F(k, n)|
∑

f ∈F(k,n)

e( f, ϕ f ) = Pr{Φ(F(X k)) �= X k}

=
∑

x∈Xk

Pk(x)Pr{Φ(F(x)) �= x}.
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Source coding and hypothesis testing 11

Here

Pr{Φ(F(x)) �= x} ≦ 2−n|{x′ : Pk(x′) ≧ Pk(x)}|

and this is less than 2−n+k(H(P)+δ) if Pk(x) ≧ 2−k(H(P)+δ).

1.7. (a) (Linear source codes) Let X be a Galois field (i.e., any finite field) and con-

sider X
k as a vector space over this field. A linear source code is a pair of

mappings f : X
k → X

n and ϕ : X
n → X

k such that f is a linear mapping

(ϕ is arbitrary). Show that for a DMS with generic distribution P there exist

linear source codes with n/k → H(P)/ log |X| and e( f, ϕ) → 0. Compare

this result with Problem 1.l(b). (Implicit in Elias (1955), cf. Wyner (1974).)

Hint Verify that the class of all linear mappings f : X
k → X

n satisfies the

condition in (b) below.

(b) Extend the result of Problem 1.6 to the case when the role of {0, 1} is played

by any finite set Y, and F(k, n) is any class of mappings f : X
k → Y

n

satisfying

1

|F(k, n)|
∣

∣{ f ∈ F(k, n) : f (x) = f (x′)}
∣

∣ ≦ |Y|−n for x �= x′.

(Such a class of mappings is called a universal hash family; see Carter and

Wegman (1979).)

Hint If |Y| = 2, the hint to Problem 1.6 applies verbatim for the random map-

ping F selected from the presentF(k, n), by the uniform distribution. If |Y| > 2,

the crucial bound on Pr{Φ(F(x)) �= x} will hold with |Y|−n instead of 2−n ;

accordingly, the assertion follows if in the hypothesis H(P) is replaced by

H(P)/ log |Y|.
1.8.∗ Show that the s(k, ε) of Theorem 1.2 satisfies

∣

∣

∣

∣

log s(k, ε) − Ek −
√

kλSk +
1

2
log k

∣

∣

∣

∣

≦
140

δ8

whenever

δ ≦ min

(

Sk,
1

Rk

)

, δ ≦ ε ≦ 1 − δ,
√

k ≧
140

δ8
.

Here Sk �
(

1
k

∑k
i=1 var (Yi )

)1/2
, Rk

△=
(

1
k

∑k
i=1 E |Yi−EYi |3

)1/3
and λ is

determined by Φ(λ)= 1 − ε, where Φ denotes the distribution function of the

standard normal distribution; Ek and Yi are the same as in the text. (See Strassen

(1964).)

1.9. In hypothesis testing problems it sometimes makes sense to speak of “prior prob-

abilities” Pr{P is true} = p0 and Pr{Q is true} = q0 = 1 − p0. On the basis of a

sample x ∈ X
k , the posterior probabilities are then calculated as
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