Contents

Introduction

1 Discrete group actions
1.1 Action of a group on a topological space
1.2 Iwasawa decomposition
1.3 Siegel sets
1.4 Haar measure
1.5 Invariant measure on coset spaces
1.6 Volume of $SL(n, \mathbb{Z}) \backslash SL(n, \mathbb{R}) / SO(n, \mathbb{R})$

2 Invariant differential operators
2.1 Lie algebras
2.2 Universal enveloping algebra of $\mathfrak{gl}(n, \mathbb{R})$
2.3 The center of the universal enveloping algebra of $\mathfrak{gl}(n, \mathbb{R})$
2.4 Eigenfunctions of invariant differential operators

3 Automorphic forms and L–functions for $SL(2, \mathbb{Z})$
3.1 Eisenstein series
3.2 Hyperbolic Fourier expansion of Eisenstein series
3.3 Maass forms
3.4 Whittaker expansions and multiplicity one for $GL(2, \mathbb{R})$
3.5 Fourier–Whittaker expansions on $GL(2, \mathbb{R})$
3.6 Ramanujan–Petersson conjecture
3.7 Selberg eigenvalue conjecture
3.8 Finite dimensionality of the eigenspaces
3.9 Even and odd Maass forms
3.10 Hecke operators
3.11 Hermite and Smith normal forms
3.12 Hecke operators for $L^2(SL(2, \mathbb{Z})) \backslash h^2$
Contents

3.13 L–functions associated to Maass forms 84

3.14 L-functions associated to Eisenstein series 89

3.15 Converse theorems for $SL(2, \mathbb{Z})$ 91

3.16 The Selberg spectral decomposition 94

4 Existence of Maass forms 99

4.1 The infinitude of odd Maass forms for $SL(2, \mathbb{Z})$ 100

4.2 Integral operators 101

4.3 The endomorphism \heartsuit 105

4.4 How to interpret \heartsuit: an explicit operator with purely cuspidal image 106

4.5 There exist infinitely many even cusp forms for $SL(2, \mathbb{Z})$ 108

4.6 A weak Weyl law 110

4.7 Interpretation via wave equation and the role of finite propagation speed 111

4.8 Interpretation via wave equation: higher rank case 111

5 Maass forms and Whittaker functions for $SL(n, \mathbb{Z})$ 114

5.1 Maass forms 114

5.2 Whittaker functions associated to Maass forms 116

5.3 Fourier expansions on $SL(n, \mathbb{Z}) \backslash \mathfrak{h}^n$ 118

5.4 Whittaker functions for $SL(n, \mathbb{R})$ 128

5.5 Jacquet’s Whittaker function 129

5.6 The exterior power of a vector space 134

5.7 Construction of the I_v function using wedge products 138

5.8 Convergence of Jacquet’s Whittaker function 141

5.9 Functional equations of Jacquet’s Whittaker function 144

5.10 Degenerate Whittaker functions 150

6 Automorphic forms and L-functions for $SL(3, \mathbb{Z})$ 153

6.1 Whittaker functions and multiplicity one for $SL(3, \mathbb{Z})$ 153

6.2 Maass forms for $SL(3, \mathbb{Z})$ 159

6.3 The dual and symmetric Maass forms 161

6.4 Hecke operators for $SL(3, \mathbb{Z})$ 163

6.5 The Godement–Jacquet L-function 172

6.6 Bump’s double Dirichlet series 186

7 The Gelbart–Jacquet lift 194

7.1 Converse theorem for $SL(3, \mathbb{Z})$ 194

7.2 Rankin–Selberg convolution for $GL(2)$ 210

7.3 Statement and proof of the Gelbart–Jacquet lift 213

7.4 Rankin–Selberg convolution for $GL(3)$ 223
Contents

8 Bounds for L-functions and Siegel zeros 235
 8.1 The Selberg class 235
 8.2 Convexity bounds for the Selberg class 238
 8.3 Approximate functional equations 241
 8.4 Siegel zeros in the Selberg class 245
 8.5 Siegel’s theorem 249
 8.6 The Siegel zero lemma 251
 8.7 Non-existence of Siegel zeros for Gelbart–Jacquet lifts 252
 8.8 Non-existence of Siegel zeros on $GL(n)$ 256

9 The Godement–Jacquet L-function 259
 9.1 Maass forms for $SL(n, \mathbb{Z})$ 259
 9.2 The dual and symmetric Maass forms 261
 9.3 Hecke operators for $SL(n, \mathbb{Z})$ 266
 9.4 The Godement–Jacquet L-function 277

10 Langlands Eisenstein series 285
 10.1 Parabolic subgroups 286
 10.2 Langlands decomposition of parabolic subgroups 288
 10.3 Bruhat decomposition 292
 10.4 Minimal, maximal, and general parabolic Eisenstein series 295
 10.5 Eisenstein series twisted by Maass forms 301
 10.6 Fourier expansion of minimal parabolic Eisenstein series 303
 10.7 Meromorphic continuation and functional equation of maximal parabolic Eisenstein series 307
 10.8 The L-function associated to a minimal parabolic Eisenstein series 310
 10.9 Fourier coefficients of Eisenstein series twisted by Maass forms 315
 10.10 The constant term 319
 10.11 The constant term of $SL(3, \mathbb{Z})$ Eisenstein series twisted by $SL(2, \mathbb{Z})$-Maass forms 321
 10.12 An application of the theory of Eisenstein series to the non-vanishing of L-functions on the line $\Re(s) = 1$ 322
 10.13 Langlands spectral decomposition for $SL(3, \mathbb{Z}) \backslash \mathbb{H}^3$ 324

11 Poincaré series and Kloosterman sums 337
 11.1 Poincaré series for $SL(n, \mathbb{Z})$ 337
 11.2 Kloosterman sums 339
 11.3 Plücker coordinates and the evaluation of Kloosterman sums 343
 11.4 Properties of Kloosterman sums 350
Contents

11.5 Fourier expansion of Poincaré series 352
11.6 Kuznetsov’s trace formula for $SL(n, \mathbb{Z})$ 354

12 Rankin–Selberg convolutions 365
12.1 The $GL(n) \times GL(n)$ convolution 366
12.2 The $GL(n) \times GL(n + 1)$ convolution 372
12.3 The $GL(n) \times GL(n')$ convolution with $n < n'$ 376
12.4 Generalized Ramanujan conjecture 381
12.5 The Luo–Rudnick–Sarnak bound for the generalized Ramanujan conjecture 384
12.6 Strong multiplicity one theorem 393

13 Langlands conjectures 395
13.1 Artin L-functions 397
13.2 Langlands functoriality 402

List of symbols 407
Appendix The GL(n)pack Manual Kevin A. Broughan 409
A.1 Introduction 409
A.2 Functions for GL(n)pack 413
A.3 Function descriptions and examples 416
References 473
Index 485