Cambridge University Press 978-1-107-56502-9 — Automorphic Forms and L-Functions for the Group GL(n,R) Dorian Goldfeld Excerpt <u>More Information</u>

1

Discrete group actions

The genesis of analytic number theory formally began with the epoch making memoir of Riemann (1859) where he introduced the zeta function,

$$\zeta(s) := \sum_{n=1}^{\infty} n^{-s}, \quad (\Re(s) > 1),$$

and obtained its meromorphic continuation and functional equation

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s), \qquad \Gamma(s) = \int_{0}^{\infty} e^{-u}u^{s} \frac{du}{u}.$$

Riemann showed that the Euler product representation

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1},$$

together with precise knowledge of the analytic behavior of $\zeta(s)$ could be used to obtain deep information on the distribution of prime numbers.

One of Riemann's original proofs of the functional equation is based on the Poisson summation formula

$$\sum_{n \in \mathbb{Z}} f(ny) = y^{-1} \sum_{n \in \mathbb{Z}} \hat{f}(ny^{-1}),$$

where f is a function with rapid decay as $y \to \infty$ and

$$\hat{f}(y) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t y} dt,$$

is the Fourier transform of f. This is proved by expanding the periodic function

$$F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$$

Cambridge University Press 978-1-107-56502-9 — Automorphic Forms and L-Functions for the Group GL(n,R) Dorian Goldfeld Excerpt <u>More Information</u>

2

Discrete group actions

in a Fourier series. If f is an even function, the Poisson summation formula may be rewritten as

$$\sum_{n=1}^{\infty} f(ny^{-1}) = y \sum_{n=1}^{\infty} \hat{f}(ny) - \frac{1}{2}(y\hat{f}(0) - f(0)),$$

from which it follows that for $\Re(s) > 1$,

$$\begin{split} \zeta(s) &\int_0^\infty f(y) y^s \frac{dy}{y} = \int_0^\infty \sum_{n=1}^\infty f(ny) y^s \frac{dy}{y} \\ &= \int_1^\infty \sum_{n=1}^\infty \left(f(ny) y^s + f(ny^{-1}) y^{-s} \right) \frac{dy}{y} \\ &= \int_1^\infty \sum_{n=1}^\infty \left(f(ny) y^s + \hat{f}(ny) y^{1-s} \right) \frac{dy}{y} - \frac{1}{2} \left(\frac{f(0)}{s} + \frac{\hat{f}(0)}{1-s} \right). \end{split}$$

If f(y) and $\hat{f}(y)$ have sufficient decay as $y \to \infty$, then the integral above converges absolutely for all complex *s* and, therefore, defines an entire function of *s*. Let

$$\tilde{f}(s) = \int_0^\infty f(y) y^s \, \frac{dy}{y}$$

denote the Mellin transform of f, then we see from the above integral representation and the fact that $\hat{f}(y) = f(-y) = f(y)$ (for an even function f) that

$$\zeta(s)\tilde{f}(s) = \zeta(1-s)\tilde{f}(1-s).$$

Choosing $f(y) = e^{-\pi y^2}$, a function with the property that it is invariant under Fourier transform, we obtain Riemann's original form of the functional equation. This idea of introducing an arbitrary test function f in the proof of the functional equation first appeared in Tate's thesis (Tate, 1950).

A more profound understanding of the above proof did not emerge until much later. If we choose $f(y) = e^{-\pi y^2}$ in the Poisson summation formula, then since $\hat{f}(y) = f(y)$, one observes that for y > 0,

$$\sum_{n=-\infty}^{\infty} e^{-\pi n^2 y} = \frac{1}{\sqrt{y}} \sum_{n=-\infty}^{\infty} e^{-\pi n^2/y}$$

This identity is at the heart of the functional equation of the Riemann zeta function, and is a known transformation formula for Jacobi's theta function

$$\theta(z) = \sum_{n=-\infty}^{\infty} e^{2\pi i n^2 z},$$

1.1 Action of a group on a topological space

3

where z = x + iy with $x \in \mathbb{R}$ and y > 0. If $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a matrix with integer coefficients a, b, c, d satisfying $ad - bc = 1, c \equiv 0 \pmod{4}, c \neq 0$, then the Poisson summation formula can be used to obtain the more general transformation formula (Shimura, 1973)

$$\theta\left(\frac{az+b}{cz+d}\right) = \epsilon_d^{-1}\chi_c(d)(cz+d)^{\frac{1}{2}}\theta(z).$$

Here χ_c is the primitive character of order ≤ 2 corresponding to the field extension $\mathbb{Q}(c^{\frac{1}{2}})/\mathbb{Q}$,

$$\epsilon_d = \begin{cases} 1 & \text{if } d \equiv 1 \pmod{4} \\ i & \text{if } d \equiv -1 \pmod{4}, \end{cases}$$

and $(cz + d)^{\frac{1}{2}}$ is the "principal determination" of the square root of cz + d, i.e., the one whose real part is > 0.

It is now well understood that underlying the functional equation of the Riemann zeta function are the above transformation formulae for $\theta(z)$. These transformation formulae are induced from the action of a group of matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on the upper half-plane $\mathfrak{h} = \{x + iy \mid x \in \mathbb{R}, y > 0\}$ given by $z \mapsto \frac{az + b}{az + d}$.

The concept of a group acting on a topological space appears to be absolutely fundamental in analytic number theory and should be the starting point for any serious investigations.

1.1 Action of a group on a topological space

Definition 1.1.1 *Given a topological space X and a group G, we say that G* **acts continuously** *on X (on the left) if there exists a map* \circ : $G \rightarrow \text{Func}(X \rightarrow X)$ *(functions from X to X), g* \mapsto *g* \circ *which satisfies:*

- $x \mapsto g \circ x$ is a continuous function of x for all $g \in G$;
- $g \circ (g' \circ x) = (g \cdot g') \circ x$, for all $g, g' \in G, x \in X$ where \cdot denotes the internal operation in the group G;
- $e \circ x = x$, for all $x \in X$ and e = identity element in G.

Example 1.1.2 Let *G* denote the additive group of integers \mathbb{Z} . Then it is easy to verify that the group \mathbb{Z} acts continuously on the real numbers \mathbb{R} with group

Discrete group actions

action \circ defined by

$$n \circ x := n + x,$$

for all $n \in \mathbb{Z}$, $x \in \mathbb{R}$. In this case e = 0.

Example 1.1.3 Let $G = GL(2, \mathbb{R})^+$ denote the group of 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{R}$ and determinant ad - bc > 0. Let

$$\mathfrak{h} := \left\{ x + iy \, \big| \, x \in \mathbb{R}, \, y > 0 \right\}$$

denote the upper half-plane. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{R})^+$ and $z \in \mathfrak{h}$ define:

$$g \circ z := \frac{az+b}{cz+d}.$$

Since

$$\frac{az+b}{cz+d} = \frac{ac|z|^2 + (ad+bc)x + bd}{|cz+d|^2} + i \cdot \frac{(ad-bc) \cdot y}{|cz+d|^2}$$

it immediately follows that $g \circ z \in \mathfrak{h}$. We leave as an exercise to the reader, the verification that \circ satisfies the additional axioms of a continuous action. One usually extends this action to the larger space $\mathfrak{h}^* = \mathfrak{h} \cup \{\infty\}$, by defining

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \circ \infty = \begin{cases} a/c & \text{if } c \neq 0, \\ \infty & \text{if } c = 0. \end{cases}$$

Assume that a group *G* acts continously on a topological space *X*. Two elements $x_1, x_2 \in X$ are said to be equivalent (mod *G*) if there exists $g \in G$ such that $x_2 = g \circ x_1$. We define

$$Gx := \left\{ g \circ x \mid g \in G \right\}$$

to be the equivalence class or orbit of x, and let $G \setminus X$ denote the set of equivalence classes.

Definition 1.1.4 Let a group G act continuously on a topological space X. We say a subset $\Gamma \subset G$ is **discrete** if for any two compact subsets $A, B \subset X$, there are only finitely many $g \in \Gamma$ such that $(g \circ A) \cap B \neq \phi$, where ϕ denotes the empty set. 1.1 Action of a group on a topological space

5

Example 1.1.5 The discrete subgroup $SL(2, \mathbb{Z})$. Let

$$\Gamma = SL(2,\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\},\$$

and let

$$\Gamma_{\infty} := \left\{ \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \; \middle| \; m \in \mathbb{Z} \right\}$$

be the subgroup of Γ which fixes ∞ . Note that $\Gamma_{\infty}\setminus\Gamma$ is just a set of coset representatives of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where for each pair of relatively prime integers (c, d) = 1 we choose a unique a, b satisfying ad - bc = 1. This follows immediately from the identity

$$\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + mc & b + md \\ c & d \end{pmatrix}.$$

The fact that $SL(2, \mathbb{Z})$ is discrete will be deduced from the following lemma.

Lemma 1.1.6 Fix real numbers 0 < r, $0 < \delta < 1$. Let $R_{r,\delta}$ denote the rectangle

$$R_{r,\delta} = \{ x + iy \mid -r \le x \le r, \ 0 < \delta \le y \le \delta^{-1} \}.$$

Then for every $\epsilon > 0$, and any fixed set S of coset representatives for $\Gamma_{\infty} \setminus SL(2, \mathbb{Z})$, there are at most $4 + (4(r+1)/\epsilon\delta)$ elements $g \in S$ such that $\operatorname{Im}(g \circ z) > \epsilon$ holds for some $z \in R_{r,\delta}$.

Proof Let
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then for $z \in R_{r,\delta}$,

$$\operatorname{Im}(g \circ z) = \frac{y}{c^2 y^2 + (cx+d)^2} < \epsilon$$

if $|c| > (y\epsilon)^{-\frac{1}{2}}$. On the other hand, for $|c| \le (y\epsilon)^{-\frac{1}{2}} \le (\delta\epsilon)^{-\frac{1}{2}}$, we have

$$\frac{y}{(cx+d)^2} < \epsilon$$

if the following inequalities hold:

$$|d| > |c|r + (y\epsilon^{-1})^{\frac{1}{2}} \ge |c|r + (\epsilon\delta)^{-\frac{1}{2}}.$$

Consequently, $\operatorname{Im}(g \circ z) > \epsilon$ only if

$$|c| \le (\delta \epsilon)^{-\frac{1}{2}}$$
 and $|d| \le (\epsilon \delta)^{-\frac{1}{2}}(r+1),$

and the total number of such pairs (not counting $(c, d) = (0, \pm 1), (\pm 1, 0)$) is at most $4(\epsilon \delta)^{-1}(r+1)$.

Discrete group actions

It follows from Lemma 1.1.6 that $\Gamma = SL(2, \mathbb{Z})$ is a discrete subgroup of $SL(2, \mathbb{R})$. This is because:

- it is enough to show that for any compact subset A ⊂ h there are only finitely many g ∈ SL(2, Z) such that (g ∘ A) ∩ A ≠ φ;
- (2) every compact subset of A ⊂ h is contained in a rectangle R_{r,δ} for some r > 0 and 0 < δ < δ⁻¹;
- (3) $((\alpha g) \circ R_{r,\delta}) \cap R_{r,\delta} = \phi$, except for finitely many $\alpha \in \Gamma_{\infty}, g \in \Gamma_{\infty} \setminus \Gamma$.

To prove (3), note that Lemma 1.1.6 implies that $(g \circ R_{r,\delta}) \cap R_{r,\delta} = \phi$ except for finitely many $g \in \Gamma_{\infty} \setminus \Gamma$. Let $S \subset \Gamma_{\infty} \setminus \Gamma$ denote this finite set of such elements g. If $g \notin S$, then Lemma 1.1.6 tells us that it is because $\operatorname{Im}(gz) < \delta$ for all $z \in R_{r,\delta}$. Since $\operatorname{Im}(\alpha gz) = \operatorname{Im}(gz)$ for $\alpha \in \Gamma_{\infty}$, it is enough to show that for each $g \in S$, there are only finitely many $\alpha \in \Gamma_{\infty}$ such that $((\alpha g) \circ R_{r,\delta}) \cap R_{r,\delta} \neq \phi$. This last statement follows from the fact that $g \circ R_{r,\delta}$ itself lies in some other rectangle $R_{r',\delta'}$, and every $\alpha \in \Gamma_{\infty}$ is of the form $\alpha = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ $(m \in \mathbb{Z})$, so that

$$\alpha \circ R_{r',\delta'} = \{ x + iy \mid -r' + m \le x \le r' + m, \ 0 < \delta' \le {\delta'}^{-1} \},\$$

which implies $(\alpha \circ R_{r',\delta'}) \cap R_{r,\delta} = \phi$ for |m| sufficiently large.

Definition 1.1.7 Suppose the group G acts continuously on a connected topological space X. A **fundamental domain** for $G \setminus X$ is a connected region $D \subset X$ such that every $x \in X$ is equivalent (mod G) to a point in D and such that no two points in D are equivalent to each other.

Example 1.1.8 A fundamental domain for the action of \mathbb{Z} on \mathbb{R} of Example 1.1.2 is given by

$$\mathbb{Z} \setminus \mathbb{R} = \{ 0 \le x < 1 \mid x \in \mathbb{R} \}.$$

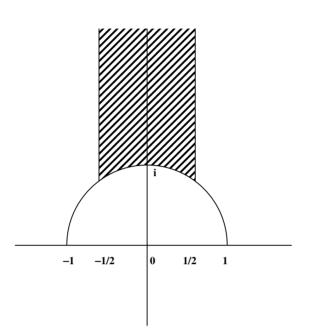
The proof of this is left as an easy exercise for the reader.

Example 1.1.9 A fundamental domain for $SL(2, \mathbb{Z}) \setminus \mathfrak{h}$ can be given as the region $\mathcal{D} \subset \mathfrak{h}$ where

$$\mathcal{D} = \left\{ z \mid -\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}, \ |z| \geq 1 \right\},\$$

with congruent boundary points symmetric with respect to the imaginary axis.

Cambridge University Press 978-1-107-56502-9 — Automorphic Forms and L-Functions for the Group GL(n,R) Dorian Goldfeld Excerpt <u>More Information</u>



1.1 Action of a group on a topological space

Note that the vertical line $V' := \left\{-\frac{1}{2} + iy \mid y \ge \frac{\sqrt{3}}{2}\right\}$ is equivalent to the vertical line $V := \left\{\frac{1}{2} + iy \mid y \ge \frac{\sqrt{3}}{2}\right\}$ under the transformation $z \mapsto z + 1$. Furthermore, the arc $A' := \left\{z \mid -\frac{1}{2} \le \operatorname{Re}(z) < 0, |z| = 1\right\}$ is equivalent to the reflected arc $A := \left\{z \mid 0 < \operatorname{Re}(z) \le \frac{1}{2}, |z| = 1\right\}$, under the transformation $z \mapsto -1/z$. To show that \mathcal{D} is a fundamental domain, we must prove:

- (1) For any $z \in \mathfrak{h}$, there exists $g \in SL(2, \mathbb{Z})$ such that $g \circ z \in \mathcal{D}$;
- (2) If two distinct points $z, z' \in D$ are congruent (mod $SL(2, \mathbb{Z})$) then $\operatorname{Re}(z) = \pm \frac{1}{2}$ and $z' = z \pm 1$, or |z| = 1 and z' = -1/z.

We first prove (1). Fix $z \in \mathfrak{h}$. It follows from Lemma 1.1.6 that for every $\epsilon > 0$, there are at most finitely many $g \in SL(2, \mathbb{Z})$ such that $g \circ z$ lies in the strip

$$D_{\epsilon} := \left\{ w \ \left| \ -\frac{1}{2} \le \operatorname{Re}(w) \le \frac{1}{2}, \ \epsilon \le \operatorname{Im}(w) \right\} \right\}.$$

Let B_{ϵ} denote the finite set of such $g \in SL(2, \mathbb{Z})$. Clearly, for sufficiently small ϵ , the set B_{ϵ} contains at least one element. We will show that there is at least one $g \in B_{\epsilon}$ such that $g \circ z \in \mathcal{D}$. Among these finitely many $g \in B_{\epsilon}$, choose one such that $\operatorname{Im}(g \circ z)$ is maximal in D_{ϵ} . If $|g \circ z| < 1$, then for $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,

7

Discrete group actions

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \text{ and any } m \in \mathbb{Z},$$
$$\operatorname{Im}(T^m Sg \circ z) = \operatorname{Im}\left(\frac{-1}{g \circ z}\right) = \frac{\operatorname{Im}(g \circ z)}{|g \circ z|^2} > \operatorname{Im}(g \circ z).$$

This is a contradiction because we can always choose *m* so that $T^m Sg \circ z \in D_{\epsilon}$. So in fact, $g \circ z$ must be in \mathcal{D} .

To complete the verification that \mathcal{D} is a fundamental domain, it only remains to prove the assertion (2). Let $z \in \mathcal{D}$, $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$, and assume that $g \circ z \in \mathcal{D}$. Without loss of generality, we may assume that

$$\operatorname{Im}(g \circ z) = \frac{y}{|cz+d|^2} \ge \operatorname{Im}(z),$$

(otherwise just interchange z and $g \circ z$ and use g^{-1}). This implies that $|cz + d| \leq 1$ which implies that $1 \geq |cy| \geq \frac{\sqrt{3}}{2}|c|$. This is clearly impossible if $|c| \geq 2$. So we only have to consider the cases $c = 0, \pm 1$. If c = 0 then $d = \pm 1$ and g is a translation by b. Since $-\frac{1}{2} \leq \operatorname{Re}(z)$, $\operatorname{Re}(g \circ z) \leq \frac{1}{2}$, this implies that either b = 0 and $z = g \circ z$ or else $b = \pm 1$ and $\operatorname{Re}(z) = \pm \frac{1}{2}$ while $\operatorname{Re}(g \circ z) = \pm \frac{1}{2}$. If c = 1, then $|z + d| \leq 1$ implies that d = 0 unless $z = e^{2\pi i/3}$ and d = 0, 1 or $z = e^{\pi i/3}$ and d = 0, -1. The case d = 0 implies that $|z| \leq 1$ which implies |z| = 1. Also, in this case, c = 1, d = 0, we must have b = -1 because ad - bc = 1. Then $g \circ z = a - \frac{1}{z}$. It follows that $g \circ e^{2\pi i/3} = a - \frac{1}{1+e^{2\pi i/3}} = a + e^{2\pi i/3}$, which implies that a = 0 or 1. A similar argument holds when $z = e^{\pi i/3}$ and d = -1. Finally, the case c = -1 can be reduced to the previous case c = 1 by reversing the signs of a, b, c, d.

1.2 Iwasawa decomposition

This monograph focusses on the general linear group $GL(n, \mathbb{R})$ with $n \ge 2$. This is the multiplicative group of all $n \times n$ matrices with coefficients in \mathbb{R} and non-zero determinant. We will show that every matrix in $GL(n, \mathbb{R})$ can be written as an upper triangular matrix times an orthogonal matrix. This is called the Iwasawa decomposition (Iwasawa, 1949).

The Iwasawa decomposition, in the special case of $GL(2, \mathbb{R})$, states that every $g \in GL(2, \mathbb{R})$ can be written in the form:

$$g = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$$
(1.2.1)

1.2 Iwasawa decomposition

where $y > 0, x, d \in \mathbb{R}$ with $d \neq 0$ and

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in O(2, \mathbb{R}),$$

where

$$O(n, \mathbb{R}) = \left\{ g \in GL(n, \mathbb{R}) \mid g \cdot {}^{t}g = I \right\}$$

is the orthogonal group. Here *I* denotes the identity matrix on $GL(n, \mathbb{R})$ and ${}^{t}g$ denotes the transpose of the matrix g. The matrix $\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}$ in the decomposition (1.2.1) is actually uniquely determined. Furthermore, the matrices $\begin{pmatrix} \alpha \\ \gamma \end{pmatrix}$ and $\begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix}$ are uniquely determined up to multiplication by $\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$.

Note that explicitly,

$$O(2,\mathbb{R}) = \left\{ \begin{pmatrix} \pm \cos t & -\sin t \\ \pm \sin t & \cos t \end{pmatrix} \middle| 0 \le t \le 2\pi \right\}.$$

We shall shortly give a detailed proof of (1.2.1) for $GL(n, \mathbb{R})$ with $n \ge 2$.

The decomposition (1.2.1) allows us to realize the upper half-plane

$$\mathfrak{h} = \left\{ x + iy \, \big| \, x \in \mathbb{R}, \, y > 0 \right\}$$

as the set of two by two matrices of type

$$\left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \middle| x \in \mathbb{R}, \ y > 0 \right\},\$$

or by the isomorphism

$$\mathfrak{h} \equiv GL(2,\mathbb{R}) / \langle O(2,\mathbb{R}), Z_2 \rangle, \qquad (1.2.2)$$

where

$$Z_n = \left\{ \begin{pmatrix} d & & 0 \\ & \ddots & \\ 0 & & d \end{pmatrix} \mid d \in \mathbb{R}, \ d \neq 0 \right\}$$

is the center of $GL(n, \mathbb{R})$, and $\langle O(2, \mathbb{R}), Z_2 \rangle$ denotes the group generated by $O(2, \mathbb{R})$ and Z_2 .

The isomorphism (1.2.2) is the starting point for generalizing the classical theory of modular forms on $GL(2, \mathbb{R})$ to $GL(n, \mathbb{R})$ with n > 2. Accordingly, we define the generalized upper half-plane \mathfrak{h}^n associated to $GL(n, \mathbb{R})$.

9

Cambridge University Press 978-1-107-56502-9 — Automorphic Forms and L-Functions for the Group GL(n,R) Dorian Goldfeld Excerpt <u>More Information</u>

Discrete group actions

Definition 1.2.3 Let $n \ge 2$. The generalized upper half-plane \mathfrak{h}^n associated to $GL(n, \mathbb{R})$ is defined to be the set of all $n \times n$ matrices of the form $z = x \cdot y$ where

$$x = \begin{pmatrix} 1 & x_{1,2} & x_{1,3} & \cdots & x_{1,n} \\ & 1 & x_{2,3} & \cdots & x_{2,n} \\ & & \ddots & & \vdots \\ & & & 1 & x_{n-1,n} \\ & & & & 1 \end{pmatrix}, \quad y = \begin{pmatrix} y'_{n-1} & & \\ & y'_{n-2} & & \\ & & \ddots & \\ & & & y'_{1} \\ & & & & 1 \end{pmatrix},$$

with $x_{i,j} \in \mathbb{R}$ for $1 \le i < j \le n$ and $y'_i > 0$ for $1 \le i \le n - 1$.

To simplify later formulae and notation in this book, we will always express y in the form:

$$y = \begin{pmatrix} y_1 y_2 \cdots y_{n-1} & & \\ & y_1 y_2 \cdots y_{n-2} & & \\ & & \ddots & & \\ & & & y_1 & \\ & & & & 1 \end{pmatrix}$$

with $y_i > 0$ for $1 \le i \le n - 1$. Note that this can always be done since $y'_i \ne 0$ for $1 \le i \le n - 1$.

Explicitly, x is an upper triangular matrix with 1s on the diagonal and y is a diagonal matrix beginning with a 1 in the lowest right entry. Note that x is parameterized by $n \cdot (n-1)/2$ real variables $x_{i,j}$ and y is parameterized by n-1 positive real variables y_i .

Example 1.2.4 The generalized upper half plane \mathfrak{h}^3 is the set of all matrices $z = x \cdot y$ with

$$x = \begin{pmatrix} 1 & x_{1,2} & x_{1,3} \\ 0 & 1 & x_{2,3} \\ 0 & 0 & 1 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 y_2 & 0 & 0 \\ 0 & y_1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $x_{1,2}, x_{1,3}, x_{2,3} \in \mathbb{R}$, $y_1, y_2 > 0$. Explicitly, every $z \in \mathfrak{h}^3$ can be written in the form

$$z = \begin{pmatrix} y_1 y_2 & x_{1,2} y_1 & x_{1,3} \\ 0 & y_1 & x_{2,3} \\ 0 & 0 & 1 \end{pmatrix}.$$

Remark 1.2.5 The generalized upper half-plane \mathfrak{h}^3 does not have a complex structure. Thus \mathfrak{h}^3 is quite different from \mathfrak{h}^2 , which does have a complex structure.