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Discrete group actions

The genesis of analytic number theory formally began with the epoch making

memoir of Riemann (1859) where he introduced the zeta function,

ζ (s) :=
∞

∑

n=1

n−s, (ℜ(s) > 1),

and obtained its meromorphic continuation and functional equation

π−s/2Ŵ

( s

2

)

ζ (s) = π−(1−s)/2Ŵ

(

1 − s

2

)

ζ (1 − s), Ŵ(s) =
∞

∫

0

e−uus du

u
.

Riemann showed that the Euler product representation

ζ (s) =
∏

p

(

1 −
1

ps

)−1

,

together with precise knowledge of the analytic behavior of ζ (s) could be used

to obtain deep information on the distribution of prime numbers.

One of Riemann’s original proofs of the functional equation is based on the

Poisson summation formula
∑

n∈Z

f (ny) = y−1
∑

n∈Z

f̂ (ny−1),

where f is a function with rapid decay as y → ∞ and

f̂ (y) =
∫ ∞

−∞
f (t)e−2π i t y dt,

is the Fourier transform of f . This is proved by expanding the periodic function

F(x) =
∑

n∈Z

f (x + n)

1
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2 Discrete group actions

in a Fourier series. If f is an even function, the Poisson summation formula

may be rewritten as

∞
∑

n=1

f (ny−1) = y

∞
∑

n=1

f̂ (ny) −
1

2
(y f̂ (0) − f (0)),

from which it follows that for ℜ(s) > 1,

ζ (s)

∫ ∞

0

f (y)ys dy

y
=

∫ ∞

0

∞
∑

n=1

f (ny)ys dy

y

=
∫ ∞

1

∞
∑

n=1

(

f (ny)ys + f (ny−1)y−s
) dy

y

=
∫ ∞

1

∞
∑

n=1

(

f (ny)ys + f̂ (ny)y1−s
) dy

y
−

1

2

(

f (0)

s
+

f̂ (0)

1 − s

)

.

If f (y) and f̂ (y) have sufficient decay as y → ∞, then the integral above

converges absolutely for all complex s and, therefore, defines an entire function

of s. Let

f̃ (s) =
∫ ∞

0

f (y)ys dy

y

denote the Mellin transform of f , then we see from the above integral rep-

resentation and the fact that ˆ̂f (y) = f (−y) = f (y) (for an even function f )

that

ζ (s) f̃ (s) = ζ (1 − s) ˜̂f (1 − s).

Choosing f (y) = e−πy2

, a function with the property that it is invariant under

Fourier transform, we obtain Riemann’s original form of the functional equa-

tion. This idea of introducing an arbitrary test function f in the proof of the

functional equation first appeared in Tate’s thesis (Tate, 1950).

A more profound understanding of the above proof did not emerge until

much later. If we choose f (y) = e−πy2

in the Poisson summation formula, then

since f̂ (y) = f (y), one observes that for y > 0,

∞
∑

n=−∞
e−πn2 y =

1
√

y

∞
∑

n=−∞
e−πn2/y .

This identity is at the heart of the functional equation of the Riemann zeta

function, and is a known transformation formula for Jacobi’s theta function

θ (z) =
∞

∑

n=−∞
e2π in2z,
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1.1 Action of a group on a topological space 3

where z = x + iy with x ∈ R and y > 0. If

(

a b

c d

)

is a matrix with integer

coefficients a, b, c, d satisfiying ad − bc = 1, c ≡ 0 (mod 4), c �= 0, then the

Poisson summation formula can be used to obtain the more general transfor-

mation formula (Shimura, 1973)

θ

(

az + b

cz + d

)

= ǫ−1
d χc(d)(cz + d)

1
2 θ (z).

Here χc is the primitive character of order ≤ 2 corresponding to the field exten-

sion Q(c
1
2 )/Q,

ǫd =

{

1 if d ≡ 1 (mod 4)

i if d ≡ −1 (mod 4),

and (cz + d)
1
2 is the “principal determination” of the square root of cz + d , i.e.,

the one whose real part is > 0.

It is now well understood that underlying the functional equation of the

Riemann zeta function are the above transformation formulae for θ (z). These

transformation formulae are induced from the action of a group of matrices
(

a b

c d

)

on the upper half-plane h = {x + iy | x ∈ R, y > 0} given by

z 
→
az + b

cz + d
.

The concept of a group acting on a topological space appears to be absolutely

fundamental in analytic number theory and should be the starting point for any

serious investigations.

1.1 Action of a group on a topological space

Definition 1.1.1 Given a topological space X and a group G, we say that G

acts continuously on X (on the left) if there exists a map ◦ : G → Func(X → X )

(functions from X to X), g 
→ g◦ which satisfies:

� x 
→ g ◦ x is a continuous function of x for all g ∈ G;
� g ◦ (g′ ◦ x) = (g · g′) ◦ x, for all g, g′ ∈ G, x ∈ X where · denotes the

internal operation in the group G;
� e ◦ x = x, for all x ∈ X and e = identity element in G.

Example 1.1.2 Let G denote the additive group of integers Z. Then it is easy

to verify that the group Z acts continuously on the real numbers R with group
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4 Discrete group actions

action ◦ defined by

n ◦ x := n + x,

for all n ∈ Z, x ∈ R. In this case e = 0.

Example 1.1.3 Let G = GL(2, R)+ denote the group of 2 × 2 matrices
(

a b

c d

)

with a, b, c, d ∈ R and determinant ad − bc > 0. Let

h :=
{

x + iy
∣

∣ x ∈ R, y > 0
}

denote the upper half-plane. For g =
(

a b

c d

)

∈ GL(2, R)+ and z ∈ h define:

g ◦ z :=
az + b

cz + d
.

Since

az + b

cz + d
=

ac|z|2 + (ad + bc)x + bd

|cz + d|2
+ i ·

(ad − bc) · y

|cz + d|2

it immediately follows that g ◦ z ∈ h. We leave as an exercise to the reader, the

verification that ◦ satisfies the additional axioms of a continuous action. One

usually extends this action to the larger space h∗ = h ∪ {∞}, by defining

(

a b

c d

)

◦ ∞ =

{

a/c if c �= 0,

∞ if c = 0.

Assume that a group G acts continously on a topological space X . Two

elements x1, x2 ∈ X are said to be equivalent (mod G) if there exists g ∈ G

such that x2 = g ◦ x1. We define

Gx :=
{

g ◦ x
∣

∣ g ∈ G
}

to be the equivalence class or orbit of x , and let G\X denote the set of equiva-

lence classes.

Definition 1.1.4 Let a group G act continuously on a topological space X.

We say a subset Ŵ ⊂ G is discrete if for any two compact subsets A, B ⊂ X,

there are only finitely many g ∈ Ŵ such that (g ◦ A) ∩ B �= φ, where φ denotes

the empty set.
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1.1 Action of a group on a topological space 5

Example 1.1.5 The discrete subgroup SL(2, Z). Let

Ŵ = SL(2, Z) :=
{(

a b

c d

) ∣

∣

∣

∣

a, b, c, d ∈ Z, ad − bc = 1

}

,

and let

Ŵ∞ :=
{(

1 m

0 1

) ∣

∣

∣

∣

m ∈ Z

}

be the subgroup of Ŵ which fixes ∞. Note that Ŵ∞\Ŵ is just a set of coset

representatives of the form

(

a b

c d

)

where for each pair of relatively prime

integers (c, d) = 1 we choose a unique a, b satisfying ad − bc = 1. This fol-

lows immediately from the identity
(

1 m

0 1

)

·
(

a b

c d

)

=
(

a + mc b + md

c d

)

.

The fact that SL(2, Z) is discrete will be deduced from the following lemma.

Lemma 1.1.6 Fix real numbers 0 < r, 0 < δ < 1. Let Rr,δ denote the

rectangle

Rr,δ =
{

x + iy
∣

∣ − r ≤ x ≤ r, 0 < δ ≤ y ≤ δ−1
}

.

Then for every ǫ > 0, and any fixed set S of coset representatives for

Ŵ∞\SL(2, Z), there are at most 4 + (4(r + 1)/ǫδ) elements g ∈ S such that

Im(g ◦ z) > ǫ holds for some z ∈ Rr,δ.

Proof Let g =
(

a b

c d

)

. Then for z ∈ Rr,δ ,

Im(g ◦ z) =
y

c2 y2 + (cx + d)2
< ǫ

if |c| > (yǫ)−
1
2 . On the other hand, for |c| ≤ (yǫ)−

1
2 ≤ (δǫ)−

1
2 , we have

y

(cx + d)2
< ǫ

if the following inequalities hold:

|d| > |c|r + (yǫ−1)
1
2 ≥ |c|r + (ǫδ)−

1
2 .

Consequently, Im(g ◦ z) > ǫ only if

|c| ≤ (δǫ)−
1
2 and |d| ≤ (ǫδ)−

1
2 (r + 1),

and the total number of such pairs (not counting (c, d) = (0, ±1), (±1, 0)) is at

most 4(ǫδ)−1(r + 1). �
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6 Discrete group actions

It follows from Lemma 1.1.6 that Ŵ = SL(2, Z) is a discrete subgroup of

SL(2, R). This is because:

(1) it is enough to show that for any compact subset A ⊂ h there are only

finitely many g ∈ SL(2, Z) such that (g ◦ A) ∩ A �= φ;

(2) every compact subset of A ⊂ h is contained in a rectangle Rr,δ for some

r > 0 and 0 < δ < δ−1;

(3) ((αg) ◦ Rr,δ) ∩ Rr,δ = φ, except for finitely many α ∈ Ŵ∞, g ∈ Ŵ∞\Ŵ.

To prove (3), note that Lemma 1.1.6 implies that (g ◦ Rr,δ) ∩ Rr,δ = φ except

for finitely many g ∈ Ŵ∞\Ŵ. Let S ⊂ Ŵ∞\Ŵ denote this finite set of such ele-

ments g. If g �∈ S, then Lemma 1.1.6 tells us that it is because Im(gz) < δ for all

z ∈ Rr,δ. Since Im(αgz) = Im(gz) for α ∈ Ŵ∞, it is enough to show that for each

g ∈ S, there are only finitely many α ∈ Ŵ∞ such that ((αg) ◦ Rr,δ) ∩ Rr,δ �= φ.

This last statement follows from the fact that g ◦ Rr,δ itself lies in some other

rectangle Rr ′,δ′ , and every α ∈ Ŵ∞ is of the form α =
(

1 m

0 1

)

(m ∈ Z), so

that

α ◦ Rr ′,δ′ =
{

x + iy
∣

∣ − r ′ + m ≤ x ≤ r ′ + m, 0 < δ′ ≤ δ′−1}

,

which implies (α ◦ Rr ′,δ′ ) ∩ Rr,δ = φ for |m| sufficiently large.

Definition 1.1.7 Suppose the group G acts continuously on a connected topo-

logical space X. A fundamental domain for G\X is a connected region D ⊂ X

such that every x ∈ X is equivalent (mod G) to a point in D and such that no

two points in D are equivalent to each other.

Example 1.1.8 A fundamental domain for the action of Z on R of

Example 1.1.2 is given by

Z\R = {0 ≤ x < 1 | x ∈ R}.

The proof of this is left as an easy exercise for the reader.

Example 1.1.9 A fundamental domain for SL(2, Z)\h can be given as the

region D ⊂ h where

D =
{

z

∣

∣

∣

∣

−
1

2
≤ Re(z) ≤

1

2
, |z| ≥ 1

}

,

with congruent boundary points symmetric with respect to the imaginary axis.
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1.1 Action of a group on a topological space 7

-1 -1/2 0 1/2 1

i

Note that the vertical line V ′ :=
{

− 1
2

+ iy
∣

∣ y ≥
√

3
2

}

is equivalent to the

vertical line V :=
{

1
2

+ iy
∣

∣ y ≥
√

3
2

}

under the transformation z 
→ z + 1.

Furthermore, the arc A′ :=
{

z
∣

∣ − 1
2

≤ Re(z) < 0, |z| = 1
}

is equivalent to

the reflected arc A :=
{

z
∣

∣ 0 < Re(z) ≤ 1
2
, |z| = 1

}

, under the transformation

z 
→ −1/z. To show that D is a fundamental domain, we must prove:

(1) For any z ∈ h, there exists g ∈ SL(2, Z) such that g ◦ z ∈ D;

(2) If two distinct points z, z′ ∈ D are congruent (mod SL(2, Z)) then

Re(z) = ± 1
2

and z′ = z ± 1, or |z| = 1 and z′ = −1/z.

We first prove (1). Fix z ∈ h. It follows from Lemma 1.1.6 that for every

ǫ > 0, there are at most finitely many g ∈ SL(2, Z) such that g ◦ z lies in the

strip

Dǫ :=
{

w

∣

∣

∣

∣

−
1

2
≤ Re(w) ≤

1

2
, ǫ ≤ Im(w)

}

.

Let Bǫ denote the finite set of such g ∈ SL(2, Z). Clearly, for sufficiently small

ǫ, the set Bǫ contains at least one element. We will show that there is at least

one g ∈ Bǫ such that g ◦ z ∈ D. Among these finitely many g ∈ Bǫ , choose one

such that Im(g ◦ z) is maximal in Dǫ . If |g ◦ z| < 1, then for S =
(

0 −1

1 0

)

,
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8 Discrete group actions

T =
(

1 1

0 1

)

, and any m ∈ Z,

Im(T m Sg ◦ z) = Im

(

−1

g ◦ z

)

=
Im(g ◦ z)

|g ◦ z|2
> Im(g ◦ z).

This is a contradiction because we can always choose m so that T m Sg ◦ z ∈ Dǫ .

So in fact, g ◦ z must be in D.

To complete the verification that D is a fundamental domain, it only remains

to prove the assertion (2). Let z ∈ D, g =
(

a b

c d

)

∈ SL(2, Z), and assume

that g ◦ z ∈ D. Without loss of generality, we may assume that

Im(g ◦ z) =
y

|cz + d|2
≥ Im(z),

(otherwise just interchange z and g ◦ z and use g−1). This implies that

|cz + d| ≤ 1 which implies that 1 ≥ |cy| ≥
√

3
2

|c|. This is clearly impossi-

ble if |c| ≥ 2. So we only have to consider the cases c = 0, ±1. If c = 0

then d = ±1 and g is a translation by b. Since − 1
2

≤ Re(z), Re(g ◦ z) ≤ 1
2
,

this implies that either b = 0 and z = g ◦ z or else b = ±1 and Re(z) = ± 1
2

while Re(g ◦ z) = ∓ 1
2
. If c = 1, then |z + d| ≤ 1 implies that d = 0 unless

z = e2π i/3 and d = 0, 1 or z = eπ i/3 and d = 0, −1. The case d = 0 implies

that |z| ≤ 1 which implies |z| = 1. Also, in this case, c = 1, d = 0, we

must have b = −1 because ad − bc = 1. Then g ◦ z = a − 1
z
. It follows that

a = 0. If z = e2π i/3 and d = 1, then we must have a − b = 1. It follows that

g ◦ e2π i/3 = a − 1
1+e2π i/3 = a + e2π i/3, which implies that a = 0 or 1. A similar

argument holds when z = eπ i/3 and d = −1. Finally, the case c = −1 can be

reduced to the previous case c = 1 by reversing the signs of a, b, c, d .

1.2 Iwasawa decomposition

This monograph focusses on the general linear group GL(n, R) with n ≥ 2.

This is the multiplicative group of all n × n matrices with coefficients in R

and non-zero determinant. We will show that every matrix in GL(n, R) can be

written as an upper triangular matrix times an orthogonal matrix. This is called

the Iwasawa decomposition (Iwasawa, 1949).

The Iwasawa decomposition, in the special case of GL(2, R), states that

every g ∈ GL(2, R) can be written in the form:

g =
(

y x

0 1

) (

α β

γ δ

) (

d 0

0 d

)

(1.2.1)
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1.2 Iwasawa decomposition 9

where y > 0, x, d ∈ R with d �= 0 and

(

α β

γ δ

)

∈ O(2, R),

where

O(n, R) =
{

g ∈ GL(n, R)
∣

∣ g · tg = I
}

is the orthogonal group. Here I denotes the identity matrix on GL(n, R) and tg

denotes the transpose of the matrix g. The matrix

(

y x

0 1

)

in the decomposition

(1.2.1) is actually uniquely determined. Furthermore, the matrices

(

α β

γ δ

)

and

(

d 0

0 d

)

are uniquely determined up to multiplication by

(

±1 0

0 ±1

)

.

Note that explicitly,

O(2, R) =
{ (

± cos t − sin t

± sin t cos t

) ∣

∣

∣

∣

0 ≤ t ≤ 2π

}

.

We shall shortly give a detailed proof of (1.2.1) for GL(n, R) with n ≥ 2.

The decomposition (1.2.1) allows us to realize the upper half-plane

h =
{

x + iy
∣

∣ x ∈ R, y > 0
}

as the set of two by two matrices of type

{(

y x

0 1

) ∣

∣

∣

∣

x ∈ R, y > 0

}

,

or by the isomorphism

h ≡ GL(2, R)
/〈

O(2, R), Z2

〉

, (1.2.2)

where

Zn =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

d 0

. . .

0 d

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

d ∈ R, d �= 0

⎫

⎪

⎬

⎪

⎭

is the center of GL(n, R), and 〈O(2, R), Z2〉 denotes the group generated by

O(2, R) and Z2.

The isomorphism (1.2.2) is the starting point for generalizing the classical

theory of modular forms on GL(2, R) to GL(n, R) with n > 2. Accordingly,

we define the generalized upper half-plane hn associated to GL(n, R).
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10 Discrete group actions

Definition 1.2.3 Let n ≥ 2. The generalized upper half-plane hn associated

to GL(n, R) is defined to be the set of all n × n matrices of the form z = x · y

where

x =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 x1,2 x1,3 · · · x1,n

1 x2,3 · · · x2,n

. . .
...

1 xn−1,n

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

y′
n−1

y′
n−2

. . .

y′
1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

with xi, j ∈ R for 1 ≤ i < j ≤ n and y′
i > 0 for 1 ≤ i ≤ n − 1.

To simplify later formulae and notation in this book, we will always express

y in the form:

y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

y1 y2 · · · yn−1

y1 y2 · · · yn−2

. . .

y1

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

with yi > 0 for 1 ≤ i ≤ n − 1. Note that this can always be done since y′
i �= 0

for 1 ≤ i ≤ n − 1.

Explicitly, x is an upper triangular matrix with 1s on the diagonal and y

is a diagonal matrix beginning with a 1 in the lowest right entry. Note that x

is parameterized by n · (n − 1)/2 real variables xi, j and y is parameterized by

n − 1 positive real variables yi .

Example 1.2.4 The generalized upper half plane h3 is the set of all matrices

z = x · y with

x =

⎛

⎝

1 x1,2 x1,3

0 1 x2,3

0 0 1

⎞

⎠ , y =

⎛

⎝

y1 y2 0 0

0 y1 0

0 0 1

⎞

⎠ ,

where x1,2, x1,3, x2,3 ∈ R, y1, y2 > 0. Explicitly, every z ∈ h3 can be written

in the form

z =

⎛

⎝

y1 y2 x1,2 y1 x1,3

0 y1 x2,3

0 0 1

⎞

⎠ .

Remark 1.2.5 The generalized upper half-plane h3 does not have a com-

plex structure. Thus h3 is quite different from h2, which does have a complex

structure.
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