
Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Part 1 Theory Fundamentals

Learning objectives
By the end of this chapter you should be able to:

■ show understanding of the basis of different number
systems

■ show understanding of, and be able to represent,
character data in its internal binary form

■ show understanding of how data for a bitmapped or
vector graphic image is encoded

■ show understanding of how sound is represented and
encoded

■ show understanding of the characteristics of video streams
■ show understanding of how digital data can be

compressed.

Chapter 1
Information Representation

2

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

1.01 Number systems
As a child we first encounter numbers when learning to count. Specifically we learn to count
using 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. These are natural numbers expressed in what can be described
as the denary, decimal or base-10 system of numbers. Had we learned to count using 0, 1, 2,
3, 4, 5, 6, 7, 8, 9 we would have more clearly understood that the number system was base-10
because there are 10 individual, distinct symbols or digits available to express a number.

A little later we learn that the representation of a number has the least significant digit at the
right-hand end. For example, writing a denary number as 346 has the meaning:

3 × 102 + 4 × 101 + 6 × 100

All computer technology is engineered with components that represent or recognise only
two states. For this reason, familiarity with the binary number system is essential for an
understanding of computing systems. The binary number system is a base-2 system which
uses just two symbols, 0 and 1. These binary digits are usually referred to as ‘bits’.

All data inside a computer system are stored and manipulated using a binary code. However,
if there is ever a need to document some of this binary code outside of the computer system
it is not helpful to use the internal code.

Instead, it is far better to use a hexadecimal representation for documentation purposes.
Whether or not a code represents a binary number, it can be treated as such and converted
to the corresponding hexadecimal number. This makes the representation more compact
and, as a result, more intelligible.

Hexadecimal numbers are in the base-16 system and therefore require 16 individual symbols
to represent a number. The symbols chosen are 0–9 supplemented with A–F. A few examples
of the hexadecimal representation of binary numbers represented by eight bits are shown in
Table 1.01.

Binary Hexadecimal Denary
00001000 08 8
00001010 0A 10
00001111 0F 15
11111111 FF 255

Table 1.01 Hexadecimal representations of binary numbers and the denary values

Note that each grouping of four bits is represented by one hexadecimal symbol. Also note
that it is common practice to include leading zeros in a hexadecimal number when used in
this way.

Question 1.01
Does a computer ever use hexadecimal numbers?

Converting between binary and denary numbers
To convert a binary number to a denary number the straightforward method is to sum the
individual position values knowing that the least significant bit represents 20, the next one 21
and so on. This is illustrated by conversion of the binary number 11001 as shown in Figure 1.01.

3

Part 1 Chapter 1: Information Representation

3

http://www.cambridge.org/9781107546738
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Position values 24 = 16
1 1 0 0 1

23 = 8 22 = 4 21 = 2 20 = 1
Binary digits

Figure 1.01 Position values for a binary number

Starting from the least significant bit, the denary equivalent is 1 + 0 + 0 + 8 + 16 = 25.

An alternative method is to use the fact that 1 × 16 is equal to 2 × 8 and so on. To carry out
the conversion you start at the most significant bit and successively multiply by two and add
the result to the next digit:

1 × 2 = 2
add 2 to 1, then 2 × 3 = 6
add 6 to 0, then 2 × 6 = 12
add 12 to 0, then 2 × 12 = 24
add 24 to 1 to give 25.

When converting a denary number to binary the procedure is successive division by two
with the remainder noted at each stage. The converted number is then given as the set of
remainders in reverse order.

This is illustrated by the conversion of denary 246 to binary:

246 ÷ 2 → 123 with remainder 0
123 ÷ 2 → 61 with remainder 1

61 ÷ 2 → 30 with remainder 1
30 ÷ 2 → 15 with remainder 0
15 ÷ 2 → 7 with remainder 1

7 ÷ 2 → 3 with remainder 1
3 ÷ 2 → 1 with remainder 1
1 ÷ 2 → 0 with remainder 1

Thus the binary equivalent of denary 246 is 11110110. As a check that the answer is sensible,
you should remember that you are expecting an 8-bit binary number because the largest
denary number that can be represented in seven bits is 27 – 1 which is 127. Eight bits can
represent values from 0 to 28 – 1 which is 255.

Converting hexadecimal numbers
To convert a hexadecimal number to binary, each digit is treated separately and converted
into a 4-bit binary equivalent, remembering that F converts to 1111, E converts to 1110 and
so on. Subsequent conversion of the resulting binary to denary can then be done if needed.

To convert a binary number to hexadecimal you start with the four least significant bits
and convert them to one hexadecimal digit. You then proceed upwards towards the most
significant bit, successively taking groupings of four bits and converting each grouping to the
corresponding hexadecimal digit.

It is possible to convert a denary number directly to hexadecimal but it is easier to convert
first to binary before completing the conversion.first to binary before completing the conversion.

TASK 1.01
Convert the denary number 374 into a hexadecimal number.

Convert the hexadecimal number 3A2C to a denary number.

4

Cambridge International AS and A level Computer Science

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

1.02 Internal coding of numbers
The discussion here relates only to the coding of integer values. The coding of non-integer
numeric values (real numbers) is considered in Chapter 16 (Section 16.03).

It is convenient at this point to emphasise that the coding used in a computer system is
almost exclusively based on bits being grouped together with eight bits representing a byte.
A byte, or a group of bytes, might represent a binary value but equally might represent a
code. For either case, the right-hand bit is referred to as the least significant and the left-hand
bit as the most significant or top bit. Furthermore, the bits in a byte are numbered right to left
starting at bit 0 and ending at bit 7.

Coding for integers
Computers have to store integer values for a number of purposes. Sometimes the
requirement is only for an unsigned integer to be stored. However, in many cases a signed
integer is needed where the coding has to identify whether the number is positive or
negative.

An unsigned integer can be stored simply as a binary number. The only decision to be made
is how many bytes should be used. If the choice is to use two bytes (16 bits) then the range of
values that can be represented is 0 to 216 – 1 which is 0 to 65535.

If a signed integer is to be represented, the obvious choice is to use one bit to represent
the + or – sign. The remaining bits then represent the value. This is referred to as ‘sign and
magnitude representation’. However, there are a number of disadvantages in using this
format.

The approach generally used is to store signed integers in two’s complement form. Here we
need two definitions. The one’s complement of a binary number is defined as the binary
number obtained if each binary digit is individually subtracted from 1 which, in practice,
means that each 0 is switched to 1 and each 1 switched to 0. The two’s complement is
defined as the binary number obtained if 1 is added to the one’s complement number.

If you need to convert a binary number to its two’s complement form you can use the
method indicated by the definition but there is a quicker method. For this you start at the
least significant bit and move left ignoring any zeros up to the first 1 which is also ignored.
Any remaining bits are then changed from 0 to 1 or from 1 to 0.

For example, expressing the number 10100100 in two’s complement form leaves the right-
hand 100 unchanged then the remaining 10100 changes to 01011 so the result is 01011100.

The differences between a sign and magnitude representation and a two’s complement
representation are illustrated in Table 1.02. For simplicity we consider only the values that
can be stored in four bits (referred to as a ‘nibble’).

Byte: a group of eight bits treated as a single unit

KEY TERMS

One’s complement: the binary number obtained by subtracting each digit in a binary number from 1

Two’s complement: the one’s complement of a binary number plus 1

KEY TERMS

5

Part 1 Chapter 1: Information Representation

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Signed denary number to
be represented

Sign and magnitude
representation

Two’s complement
representation

+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
–0 1000 Not represented
–1 1001 1111
–2 1010 1110
–3 1011 1101
–4 1100 1100
–5 1101 1011
–6 1110 1010
–7 1111 1001
–8 Not represented 1000

Table 1.02 Representations of signed integers

There are several points to note here. The first is that sign and magnitude representation has
a positive and a negative zero which could cause a problem if comparing values. The second,
somewhat trivial, point is that there is an extra negative value represented in two’s complement.

The third and most important point is that the representations in two’s complement are
such that starting from the lowest negative value each successive higher value is obtained by
adding 1 to the binary code. In particular, when all digits are 1 the next step is to roll over to
an all-zero code. This is the same as any digital display would do when each digit has reached
its maximum value.

It can be seen that the codes for positive values in the two’s complement form are the same
as the sign and magnitude codes. However, this fact rather hides the truth that the two’s
complement code is self-complementary. If a negative number is in two’s complement form
then the binary code for the corresponding positive number can be obtained by taking the
two’s complement of the binary code representing the negative number.

TASK 1.02
Take the two’s complement of the binary code for –5 and show that you get the code for +5.

worked example 1.01

Converting a negative number expressed in two’s complement form to the
corresponding denary number.

Consider the two’s complement binary number 10110001.

Method 1. Convert to the corresponding positive binary number then find the denary
value

Converting to two’s complement leaves unchanged the 1 in the least significant bit
position then changes all of the remaining bits to produce 01001111.

6

Cambridge International AS and A level Computer Science

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Now using the ‘successive multiplication by two’ method we get (ignoring the 0 in the
most significant bit position):

2 × 1 = 2
add 2 to 0, then 2 × 2 = 4
add 4 to 0, then 2 × 4 = 8
add 8 to 1, then 2 × 9 = 18
add 18 to 1, then 2 × 19 = 38
add 38 to 1, then 2 × 39 = 78
add 78 to 1 to give 79

So the original number is –79 in denary.

Method 2. Sum the individual position values but treat the most significant bit as a
negative value

From the original binary number 10110001 this produces the following:

 –27 + 0 + 25 + 24 + 0 + 0 + 0 + 1 =

 –128 + 0 + 32 + 16 + 0 + 0 + 0 + 1 = –79.

Discussion Point:
What is the two’s complement of the binary value 1000? Are you surprised by this?

One final point to make here is that the reason for using two’s complement representations
is to simplify the processes for arithmetic calculations. The most important example of this is
that the process used for subtracting one signed integer from another is to convert the number
being subtracted to its two’s complement form and then to add this to the other number.

TASK 1.03
Using a byte to represent each value, carry out the subtraction of denary 35 from denary 67
using binary arithmetic with two’s complement representations.

Binary coded decimal (BCD)
One exception to grouping bits in bytes to represent integers is the binary coded decimal
(BCD) scheme. If there is an application where single denary digits are required to be stored
or transmitted, BCD offers an efficient solution. The BCD code uses four bits (a nibble) to
represent a denary digit. A four-bit code can represent 16 different values so there is scope
for a variety of schemes. This discussion only considers the simplest BCD coding which
expresses the value directly as a binary number.

If a denary number with more than one digit is to be converted to BCD there has to be a
group of four bits for each denary digit. There are, however, two options for BCD; the first is
to store one BCD code in one byte leaving four bits unused. The other option is packed BCD
where two 4-bit codes are stored in one byte. Thus, for example, the denary digits 8503 could
be represented by either of the codes shown in Figure 1.02.

Two BCD digits per byte

One BCD digit per byte 00001000 00000101 00000000 00000011

10000101 00000011

Figure 1.02 Alternative BCD representations of the denary digits 8503

7

Part 1 Chapter 1: Information Representation

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

There are a number of applications where BCD can be used. The obvious type of application
is where denary digits are to be displayed, for instance on the screen of a calculator or in a
digital time display. A somewhat unexpected application is for the representation of currency
values. When a currency value is written in a format such as $300.25 it is as a fixed-point
decimal number (ignoring the dollar sign). It might be expected that such values would be
stored as real numbers but this cannot be done accurately (this type of problem is discussed
in more detail in Chapter 16 (Section 16.03). One solution to the problem is to store each
denary digit in a BCD code.

It is instructive to consider how BCD arithmetic
might be performed by a computer if fixed-point
decimal values were stored as BCD values. Let’s
consider a simple example of addition to illustrate
the potential problem. We will assume a two-byte
representation. The first byte represents two
denary digits for the whole part of the number and
the second byte represents two denary digits for
the fractional part. If the two values are $0.26 and
$0.85 then the result should be $1.11. Applying
simple binary addition of the BCD codes will
produce the result shown in Figure 1.03.

In the first decimal place position, the 2 has been added to the 8 to get 10 but the BCD
scheme only recognises binary codes for a single-digit denary number so the addition has
failed. The same problem has occurred in the addition for the second decimal place values.
The result shown is ‘point ten eleven’, which is meaningless in denary numbers. The ‘carry’ of
a digit from one decimal place to the next has been ignored.

To counteract this in BCD arithmetic,
the processor needs to recognise that
an impossible value has been produced
and apply a method to remedy this. We
will not consider the recognition method.
The remedy is to add 0110 whenever the
problem is detected.

Starting with the least significant nibble
(see Figure 1.04), adding 0110 to 1011
gives 10001 which is a four-bit value plus
a carry bit. The carry bit has to be added
to the next nibble as well as adding the
0110 to correct the error. Adding 1 to 1010
and then adding 0110 gives 10001. Again
the carry bit is added to the next nibble to
give the correct result of $1.11 for the sum
of $0.26 and $0.85.

In Chapter 5 (Section 5.02) there is a brief discussion of how a processor can recognise
problems arising from arithmetic operations using numbers coded as binary values.

0010 0110
+

0000 0000

1000 0101

1010 1011

0000 0000

0000 0000

0.26

0.85

Figure 1.03 Erroneous addition using BCD coding

0010 0110
+

0000 0000

1000 0101

1010 1011

0000 0000

0000 0000

0000 0001

0.26

0.85

0110
1 0001

0111 0001
1 0001 0001

Initial sum (giving values over 1001)

Add correction to least significant nibble
The result has a carry bit

Add correction plus carry to next nibble
The result has a carry bit

0001 0001Add carry to next nibble to get 1.11

Figure 1.04 Correct representation of the BCD code for 1.11

8

Cambridge International AS and A level Computer Science

http://www.cambridge.org/9781107546738
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

1.03 Internal coding of text
ASCII code
If text is to be stored in a computer it is necessary to have a coding scheme that provides a
unique binary code for each distinct individual component item of the text. Such a code is
referred to as a character code. There have been three significant coding schemes used in
computing. One of these, which is only mentioned here in passing, is the EBCDIC code used
by IBM in their computer systems.

The scheme which has been used for the longest time is the ASCII (American Standard Code
for Information Interchange) coding scheme. This is an internationally agreed standard.
There are some variations on ASCII coding schemes but the major one is the 7-bit code. It is
customary to present the codes in a table for which a number of different designs have been
used.

Table 1.03 shows an edited version with just a few of the codes. The first column contains
the binary code which would be stored in one byte, with the most significant bit set to
zero and the remaining bits representing the character code. The second column presents
the hexadecimal equivalent as an illustration of when it can be useful to use such a
representation.

Binary code Hexadecimal equivalent Character Description
00000000 00 NUL Null character
00000001 01 SOH Start of heading
00000010 02 STX Start of text
00100000 20 Space
00100001 21 ! Exclamation mark
00100100 24 $ Dollar
00101011 2B + Plus
00101111 2F / Forward slash
00110000 30 0 Zero
00110001 31 1 One
00110010 32 2 Two
01000001 41 A Uppercase A
01000010 42 B Uppercase B
01000011 43 C Uppercase C
01100001 61 a Lowercase a
01100010 62 b Lowercase b
01100011 63 c Lowercase c

Table 1.03 Some examples of ASCII codes

The full table shows the 27 (128) different codes available for a 7-bit code. You should not try
to remember any of the individual codes but there are certain aspects of the coding scheme
which you need to understand.

Firstly, you can see that the majority of the codes are for printing or graphic characters.
However, the first few codes represent non-printing or control characters. These were
introduced to assist in data transmission or in entering data at a computer terminal. It is fair
to say that these codes have very limited use in the modern computer world so they need no
further consideration.

9

Part 1 Chapter 1: Information Representation

http://www.cambridge.org/9781107546738
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Secondly, it can be seen that the obvious types of character that could be expected to be
used in a text based on the English language have been included. Specifically there are
upper- and lower-case letters, punctuation symbols, numerals and arithmetic symbols in the
coding tables.

It is worth emphasising here that these codes for numbers are exclusively for use in the
context of stored, displayed or printed text. All of the other coding schemes for numbers are
for internal use in a computer system and would not be used in a text.

There are some special features that make the coding scheme easy to use in certain
circumstances. The first is that the codes for numbers and for letters are in sequence in each
case so that, for example, if 1 is added to the code for seven the code for eight is produced.
The second is that the codes for the upper-case letters differ from the codes for the
corresponding lower-case letters only in the value of bit 5. This makes conversion of upper
case to lower case, or the reverse, a simple operation.

Unicode
Despite still being widely used, the ASCII codes are far from adequate for many purposes.
For this reason new coding schemes have been developed and continue to be developed
further. The discussion here describes the Unicode schemes but it should be noted that
these have been developed in tandem with the Universal Character Set (UCS) scheme;
the only differences between these schemes are the identifying names given to them. The
aim of Unicode is to be able to represent any possible text in code form. In particular this
includes all languages in the world. However, Unicode is designed so that once a coding set
has been defined it is never changed. In particular, the first 128 characters in Unicode are
the ASCII codes.

Unicode has its own special terminology. For example, a character code is referred to as
a ‘code point’. In any documentation there is a special way of identifying a code point. An
example is U+0041 which is the code point corresponding to the alphabetic character A. The
0041 are hexadecimal characters representing two bytes. The interesting point is that in a
text where the coding has been identified as Unicode it is only necessary to use a one-byte
representation for the 128 codes corresponding to ASCII. To ensure such a code cannot be
misinterpreted, the codes where more than one byte is needed have restrictions applied.
Figure 1.05 shows the format used for a two-byte code.

11?????? 10??????

Figure 1.05 Unicode two-byte code format

The most significant bit for an ASCII code is always 0 so neither of the two-byte
representations here can cause confusion.

1.04 Images
Images can be stored in a computer system for the eventual purpose of displaying the image
on a screen or for presenting it on paper, usually as a component of a document. Such an
image can be created by using an appropriate drawing package. Alternatively, when an image
already exists independently of the computer system, the image can be captured by using
photography or by scanning.

10

Cambridge International AS and A level Computer Science

http://www.cambridge.org/9781107546738
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-1-107-54673-8 – Cambridge International AS and A Level Computer Science
Sylvia Langfield Dave Duddell
Excerpt
More information

© in this web service Cambridge University Press www.cambridge.org

Vector graphics
It is normal for an image that is created by a drawing package or a computer-aided design
(CAD) package to consist of a number of geometric objects. The outcome is then usually for
the image to be stored as a vector graphic file.

We do not need to consider how an image of this type
would be created. We do need to consider how the data
is stored after the image has been created. A vector
graphic file contains a drawing list. The list contains
a command for each object included in the image.
Each command has a list of attributes that define the
properties of the object. The properties include the
basic geometric data such as, for a circle, the position of
the centre and its radius. In addition properties such as
the thickness and style of a line, the colour of a line and
the colour that fills the shape, if that is appropriate, are
defined. An example of what could be created as a vector
graphic file is shown in Figure 1.06.

The most important property of a vector graphic image is that the dimensions of the objects
are not defined explicitly but instead are defined relative to an imaginary drawing canvas. In
other words, the image is scalable. Whenever the image is to be displayed the file is read, the
appropriate calculations are made and the objects are drawn to a suitable scale. If the user
then requests that the image is redrawn at a larger scale the file is read again and another set
of calculations are made before the image is displayed. This process cannot of itself cause
distortion of the image.

TASK 1.04
Construct a partial drawing list for the graphic shown in Figure 1.06. You can take
measurements from the image and use the bottom left corner of the box as the origin of a
coordinate system. You can invent your own format for the drawing list.

A vector graphic file can only be displayed directly on a graph plotter, which is an expensive
specialised piece of hardware. Otherwise the file has to be converted to a bitmap before
presentation.

Bitmaps
Most images do not consist of geometrically defined shapes so a vector graphic
representation is inappropriate. The general purpose approach is to store an image as a
bitmap. Typical uses are when capturing an existing image by scanning or perhaps by taking
a screen-shot. Alternatively, an image can be created by using a simple drawing package.

The fundamental concept underlying the creation of a bitmap file is that the picture
element (pixel) is the smallest identifiable component of a bitmap image. The image is
stored as a two-dimensional matrix of pixels. The pixel itself is a very simple construct; it has
a position in the matrix and it has a colour.

Figure 1.06 A simple example
of a vector graphic image

Vector graphic: a graphic consisting of components defined by geometric formulae and associated
properties, such as line colour and style

KEY TERMS

11

Part 1 Chapter 1: Information Representation

