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Classical Period Domains

Radu Laza and Zheng Zhang

We survey the role played by Hermitian symmetric domains in the study of

variations of Hodge Structure. These are extended notes based on the lectures

given by the first author in Vancouver at the “Advances in Hodge Theory” school

(June 2013).

Introduction

There are two classical situations where the period map plays an essential role

for the study of moduli spaces, namely the moduli of principally polarized

abelian varieties and the moduli of polarized K3 surfaces. What is common for

these two situations is the fact that the period domain is in fact a Hermitian

symmetric domain. It is well known that the only cases when a period domain

is Hermitian symmetric are weight 1 Hodge structures and weight 2 Hodge

structures with h2,0 = 1.

In general, it is difficult to study moduli spaces via period maps. A major

difficulty in this direction comes from the Griffiths’ transversality relations.

Typically, the image Z of the period map in a period domain D will be

a transcendental analytic subvariety of high condimension. The only cases

when Z can be described algebraically are when Z is a Hermitian symmetric

subdomain of D with a totally geodesic embedding (and satisfying the

horizontality relation). This is closely related to the geometric aspect of the

theory of Shimura varieties of Deligne. It is also the case of unconstrained

period subdomains in the sense of [GGK12]. We call this case classical, in

contrast to the “non-classical” case when the Griffiths’ transversality relations

are non-trivial.

The purpose of this survey is to review the role of Hermitian symmetric

domains in the study of variations of Hodge structure. Let us give a brief
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overview of the content of the paper. In Section 1, we review the basic

definitions and properties of Hermitian symmetric domains (Section 1.1)

and their classification (Section 1.2) following [Mil04]. The classification is

done by reconstructing Hermitian symmetric domains from the associated

(semisimple) Shimura data, which are also convenient for the purpose of

constructing variations of Hodge structure over Hermitian symmetric domains

(Section 1.3). As a digression, we also include the discussion that if the

universal family of Hodge structures over a period subdomain satisfies

Griffiths transversality then the subdomain must be Hermitian symmetric (i.e.

unconstrained ⇒ Hermitian symmetric). Section 2 concerns locally symmetric

varieties which are quotients of Hermitian symmetric domains. We first

review the basic theory of locally symmetric domains and provide some

examples of algebraic varieties whose moduli spaces are birational to locally

symmetric domains (Section 2.1), and then give a representation theoretic

description of variations of Hodge structure on locally symmetric domains

(Section 2.2) following [Mil13]. Using the description, we discuss the

classification of variations of Hodge structure of abelian variety type and

Calabi-Yau type following [Del79] and [FL13] respectively. Baily-Borel and

toroidal compactifications of locally symmetric varieties and their Hodge

theoretic meanings are reviewed in Section 3.

1 Hermitian Symmetric Domains

In this section, we review the basic concepts and properties related to

Hermitian Symmetric domains with an eye towards the theory of Shimura

varieties and Hodge theory. The standard (differential geometric) reference for

the material in this section is Helgason [Hel78] (see also the recent survey

[Viv13]). For the Hodge theoretic point of view, we refer to the original paper

of Deligne [Del79] and the surveys of Milne [Mil04] [Mil13].

1.1. Hermitian symmetric spaces and their automorphisms

1.1.1. Hermitian symmetric spaces

We start by recalling the definition of Hermitian symmetric spaces.

Definition 1.1. A Hermitian manifold is a pair (M,g) consisting of a complex

manifold M together with a Hermitian metric g on M. A Hermitian manifold

(M,g) is symmetric if additionally

(1) (M,g) is homogeneous, i.e. the holomorphic isometry group Is(M,g) acts

transitively on M;
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1 Classical Period Domains 5

(2) for any point p * M, there exists an involution sp (i.e. sp is a holomorphic

isometry and s2
p = Id) such that p is an isolated fixed point of sp (such an

involution sp is called a symmetry at p).

A connected symmetric Hermitian manifold is called a Hermitian symmetric

space. (If there is no ambiguity, we will use M to denote the Hermitian

manifold (M,g).)

Note that if (M,g) is homogeneous, it suffices to check Condition (2) at a

point (i.e. it suffices to construct a symmetry sp at some point p * M). Also, the

automorphism group Is(M,g) consists of holomorphic isometries of M:

Is(M,g) = Is(M>,g)+ Hol(M),

where M> denotes the underlying C> manifold, Is(M>,g) is the group of

isometries of (M>,g) as a Riemannian manifold, and Hol(M) is the group of

automorphisms of M as a complex manifold (i.e. the group of holomorphic

automorphisms).

Example 1.2. There are three basic examples of Hermitian symmetric

spaces:

(a) the upper half plane H;

(b) the projective line P1 (or the Riemann sphere endowed with the restriction

of the standard metric on R
3);

(c) any quotient C/ÿ of C by a discrete additive subgroup ÿ ¢ C (with the

natural complex structure and Hermitian metric inherited from C).

To illustrate the definition, we discuss the example of the upper half plane

H. First, it is easy to see that H, endowed with the metric dzdz̄

y2 , is a Hermitian

manifold. Clearly, H is homogeneous with respect to the natural action of

SL2(R), given by
(

a b

c d

)

z :=
az + b

cz + d
, for z *H.

In fact, Is(H) >= SL2(R)/{±I}. Finally, the isomorphism z ÿ³ 2 1
z

is an

involution at the point i *H. Since H is connected, we conclude that the upper

half space H is a Hermitian symmetric space.

The three examples above represent the three basic classes of Hermitian

symmetric spaces. Specifically, we recall the following:

Definition 1.3. Let M be a Hermitian symmetric space.

(1) M is said to be of Euclidean type if it is isomorphic to C
n/ÿ for some

discrete additive subgroup ÿ ¢C
n.
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(2) M is said to be irreducible if it is not of Euclidean type and can not

be written as a product of two Hermitian symmetric spaces of lower

dimensions.

(3) M is said to be of compact type (resp. noncompact type) if it is the product

of compact (resp. noncompact) irreducible Hermitian symmetric spaces.

Moreover, Hermitian symmetric spaces of noncompact type are also called

Hermitian symmetric domains.

Every Hermitian symmetric space can be decomposed uniquely into a

product of Hermitian symmetric spaces of these three types:

Theorem 1.4 (Decomposition Theorem). Every Hermitian symmetric space

M decomposes uniquely as

M = M0 × M− × M+,

where M0 is a Euclidean Hermitian symmetric space and M− (resp. M+) is

a Hermitian symmetric space of compact type (resp. of noncompact type).

Moreover, M− (resp. M+) is simply connected and decomposes uniquely as

a product of compact (resp. noncompact) irreducible Hermitian symmetric

spaces.

Proof. See [Hel78, Ch. VIII], especially Proposition 4.4, Theorem 4.6 and

Proposition 5.5.

In this survey, we are mostly interested in Hermitian symmetric domains

(or, equivalently, Hermitian symmetric spaces of noncompact type). Note that

the terminology is justified by the Harish-Chandra embedding theorem: every

Hermitian symmetric space of noncompact type can be embedded into some Cn

as a bounded domain. Conversely, every bounded symmetric domain D ⊂ C
n

has a canonical Hermitian metric (called the Bergman metric) which makes D

a Hermitian symmetric domain. For instance, the bounded realization of the

upper half plane H is the unit ball B1 ⊂C.

1.1.2. Automorphism groups of Hermitian symmetric domains

Let (D,g) be a Hermitian symmetric domain. Endowed with the compact-open

topology, the group Is(D∞,g) of isometries has a natural structure of (real)

Lie group. As a closed subgroup of Is(D∞,g), the group Is(D,g) inherits

the structure of a Lie group. Let us denote by Is(D,g)+ (resp. Is(D∞,g)+,

Hol(D)+) the connected component of Is(D,g) (resp. Is(D∞,g), Hol(D))

containing the identity.

Proposition 1.5. Let (D,g) be a Hermitian symmetric domain. The inclusions

Is(D∞,g) ⊃ Is(D,g) ⊂ Hol(D)
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1 Classical Period Domains 7

induce identities

Is(D>,g)+ = Is(D,g)+ = Hol(D)+.

Proof. See [Hel78, Lemma 4.3].

Since D is homogeneous, one can recover the smooth structure of D as a

quotient Lie group of Is(D,g)+ by the stabilizer of a point. Specifically,

Theorem 1.6. Notations as above.

(1) Is(D,g)+ is an adjoint (i.e. semisimple with trivial center) Lie group.

(2) For any point p * D, the subgroup Kp of Is(D,g)+ fixing p is compact.

(3) The map

Is(D,g)+/Kp ³ D, gKp ÿ³ g · p

is an Is(D,g)+-equivariant diffeomorphism. In particular, Is(D,g)+ (hence

Hol(D)+ and Is(D>,g)+) acts transitively on D.

Proof. See [Hel78, Ch. IV], especially Theorem 2.5 and Theorem 3.3.

In particular, every irreducible Hermitian symmetric domain is diffeomor-

phic to H/K for a unique pair (H,K) (obtained as above) with H a connected

noncompact simple adjoint Lie group and K a maximal connected compact

Lie group (cf. [Hel78, Ch. VIII, §6]). Conversely, given such a pair (H,K), we

obtain a smooth homogenous manifold H/K. The natural question is how to

endow H/K with a complex structure and a compatible Hermitian metric so

that it is a Hermitian symmetric domain. This can be done in terms of standard

Lie theory (see [Viv13, §2.1] and the references therein). However, we shall

answer this question from the viewpoint of Shimura data. Specifically, we shall

replace the Lie group H by an algebraic group G, replace cosets of K by certain

homomorphisms u : U1 ³ G from the circle group U1 to G, and then answer

the question in terms of the pairs (G,u).

To conclude this subsection (and as an initial step to produce a Shimura

datum), we discuss how to associate a R-algebraic group G to the real Lie

group Hol(D)+ in such a way that G(R)+ = Hol(D)+. The superscript + in

G(R)+denotes the neutral connected component relative to the real topology

(vs. the Zariski topology). We shall follow [Mil11] for the terminologies on

algebraic groups, and also refer the readers to it for the related background

materials. For example, we say an algebraic group is simple if it is

non-commutative and has no proper normal algebraic subgroups, while almost

simple if it is non-commutative and has no proper normal connected algebraic

subgroup (N.B. an almost simple algebraic group can have finite center).
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Proposition 1.7. Let (D,g) be a Hermitian symmetric domain, and let h =

Lie(Hol(D)+). There is a unique connected adjoint real algebraic subgroup G

of GL(h) such that (inside GL(h))

G(R)+ = Hol(D)+.

Moreover, G(R)+ = G(R) ∩ Hol(D) (inside GL(h)); therefore G(R)+ is the

stabilizer in G(R) of D.

Proof. We sketch the proof of the first statement here, and refer the readers to

[Mil04, Prop. 1.7] and references therein for details and the second statement.

Since Hol(D)+ is adjoint, its adjoint representation on the Lie algebra h

is faithful, and thus there exists an algebraic group G ⊂ GL(h) such that

Lie(G) = [h,h] (inside gl(h)). Because Hol(D)+ is semisimple, [h,h] = h and

so G(R)+ = Hol(D)+ (inside GL(h)).

1.2. Classification of Hermitian symmetric domains

Consider the circle group U1 = {z * C | |z| = 1}. Motivated by the following

fact, one can think of a point of D as a homomorphism U1 ³ G.

Theorem 1.8. Let D be Hermitian symmetric domain. For each p * D, there

exists a unique homomorphism up : U1 ³ Hol(D)+ such that up(z) fixes p and

acts on TpD as multiplication by z.

Proof. See [Mil04, Thm. 1.9].

Remark 1.9. Using the uniqueness of up one can easily see that Hol(D)+ acts

on the set of up’s via conjugation. Clearly, given two different points p ÿ= pÿ we

choose f * Hol(D)+ with f (p) = pÿ, then f ç up(z) ç f 21 (z * U1) satisfies the

conditions in Theorem 1.8 for pÿ, and thus upÿ = f ç up ç f 21.

Example 1.10. Let p = i * H. As previously noted, we have Hol(H) =

PSL2(R). The associated real algebraic group (compare Proposition 1.7) is

(PGL2)R, and it holds: PGL2(R)+ = PSL2(R) (N.B. the group PSL2 is not

an algebraic group). To define ui : U1 ³ PSL2(R) we first consider the

homomorphism

hi : U1 ³ SL2(R),z = a + ib ÿ³

(

a b

2b a

)

.

It is easy to verify that hi(z) fixes i. Since

d

dw

(

aw+ b

2bw+ a

)∣

∣

∣

∣

w=i

=
a2 + b2

(a 2 ib)2
=

z

z̄
= z2,
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1 Classical Period Domains 9

hi(z) acts on the tangent space TiH as multiplication by z2. Thus, for z * U1,

we choose a square root
√

z ∈ U1 and set

ui(z) := hi(
√

z).

The homomorphism ui : U1 → PSL2(R) = SL2(R)/ ± I is independent of

the choice of
√

z (since hi(−1) = −I). Thus, ui satisfies the conditions of

Theorem 1.8 at the point i ∈H.

Since G(R)+(= Hol(D)+) acts transitively on D, set-theoretically we can

view D as the G(R)+-conjugacy class of up : U1 → G(R). (Later, we will see

that up is an algebraic homomorphism). This viewpoint suggests a connection

between Hermitian symmetric domains and variations of Hodge structure.

Namely, recall that one can view a Hodge structure as a representation of

the Deligne torus S := ResC/RGm. Then, if we define hp : S → G by hp(z) =
up(z/z̄), any representation G → GL(V) of G (e.g. Ad : G → GL(Lie(G))),

composed with hp for all p ∈ D, will produce a variation of Hodge

structure on D.

Conversely, given an abstract pair (G,u : U1 → G) with G a real adjoint

algebraic group and u an algebraic homomorphism it is natural to ask the

following questions:

Question 1.11. For a pair (G,u) as above, we let D be the G(R)+-conjugacy

class of u. Denote by Ku the subgroup of G(R)+ fixing u. There is a bijection

G(R)+/Ku → D and so the space D has a natural smooth structure.

(1) Under what conditions can D be given a nice complex structure (or a

Hermitian structure)? Under what additional conditions is D a Hermitian

symmetric space?

(2) Under what conditions is Ku compact?

(3) Under what conditions is D be a Hermitian symmetric domain (i.e. of

noncompact type)?

1.2.1. Representations of U1

Let T be an algebraic torus defined over a field k, and let K be a Galois

extension of k splitting T . The character group X∗(T) is defined by X∗(T) =
Hom(TK ,Gm). If r is the rank of T , then X∗(T) is a free abelian group of

rank r which comes equipped with an action of Gal(K/k). In general, to

give a representation ρ of T on a k-vector space V amounts to giving an

X∗(T)-grading VK =
⊕

χ∈X∗(T) Vχ on VK := V ⊗k K with the property that

σ(Vχ ) = Vσχ , all σ ∈ Gal(K/k), χ ∈ X∗(T).

Here Vχ is the K-subspace of VK on which T(K) acts through χ :

Vχ = {v ∈ VK | ρ(t)(v) = χ(t) · v, ∀ t ∈ T(K)}.
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For instance, we can regard U1 as a real algebraic torus. As an R-algebraic

group, the K-valued points (with K an R-algebra) of U1 are

U1(K) =

ÿÿ

a b

2b a

ÿ

* M2×2(K)

ÿ

ÿ

ÿ

ÿ

a2 + b2 = 1

ÿ

.

In particular, U1(R) is the circle group and U1(C) can be identified with C
7

through

ÿ

a b

2b a

ÿ

ÿ³ a + ib, conversely z ÿ³

»

¿

1
2
(z + 1

z
) 1

2i
(z 2 1

z
)

2 1
2i
(z 2 1

z
) 1

2
(z + 1

z
)

¿

£ .

Noting that X7(U1) >= Z and complex conjugation acts on X7(U1) as

multiplication by 21, we obtain the following proposition.

Proposition 1.12. Consider a representation ρ of U1 on a R-vector space V.

Then VC =
ÿ

n*Z Vn
C

with the property that Vn
C

= V2n
C

, where Vn
C

= {v * VC |

ρ(z)(v) = zn · v, "z * C
7}. Moreover, if V is irreducible, then it must be

isomorphic to one of the following types.

(a) V >=R with U1 acting trivially (so VC = V0
C

).

(b) V >= R
2 with z = x + iy acting as

ÿ

x 2y

y x

ÿn

for some n > 0 (so VC =

Vn
C

· V2n
C

).

In particular, every real representation of U1 is a direct sum of representations

of these types.

Remark 1.13. Let V be a R-representation of U1 and write VC =
ÿ

n*Z Vn
C

as above. Because V0
C

= V0
C

, the weight space V0
C

is defined over R; in other

words, it is the complexification of the real subspace V0 of V defined by V +V0
C

:

V0 ·RC= V0
C

. The natural homomorphism V/V0 ³ VC/
ÿ

nf0 Vn
C

>=
ÿ

n>0 Vn
C

is a R-linear isomorphism.

The representations of U1 have the same description no matter if we regard

it as a Lie group or an algebraic group, and so every homomorphism U1 ³

GL(V) of Lie groups is algebraic. In particular, the homomorphism up : U1 ³

Hol(D)+ >= G(R)+ is algebraic for any p * D. Let Kp be the subgroup of G(R)+

fixing p. By Theorem 1.8, up(z) acts on the R-vector space

Lie(G)/Lie(Kp) >= TpD

as multiplication by z, and it acts on Lie(Kp) trivially. Suppose TpD >= C
k and

identify it with R
2k by (a1 + ib1, . . . ,ak + ibk) ÿ³ (a1,b1, . . . ,ak,bk), then it is

easy to write down the matrix of multiplication by z = x+ iy and conclude that
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