Sign Language Phonology

A concise overview of key findings and ideas in sign language phonology and its contributions to related fields, including historical linguistics, morphology, prosody, language acquisition, and language creation. Working on sign languages not only provides important new insights on familiar issues, but also poses a whole new set of questions about phonology, because of the use of the visual communication modality. This book lays out the properties needed to recognize a phonological system regardless of its modality. Written by a leading expert in sign language research, the book describes the current state of the field and addresses a range of issues that students and researchers will encounter in their work, as well as highlighting the significant impact that the study of sign languages has had on the field of phonology as a whole. It includes lists of further reading materials, and a full glossary, as well as helpful illustrations that demonstrate the important aspects of sign language structure, even to the most unfamiliar of readers. A text that will be useful to both specialists and general linguists, this book provides the first comprehensive overview of the field.

DIANE BRENTARI is the Mary K. Werkman Professor in the Department of Linguistics at the University of Chicago. She is author or editor of six books including Shaping Phonology (co-edited with Jackson Lee, 2018), Sign Languages: A Cambridge Language Survey (Cambridge University Press, 2010), A Prosodic Model of Sign Language Phonology (1998) and Foreign Vocabulary in Sign Languages: A Cross-linguistic Investigation of Word Formation (2001).
KEY TOPICS IN PHONOLOGY

Key Topics in Phonology focuses on the main topics of study in phonology today. It consists of accessible yet challenging accounts of the most important issues, concepts and phenomena to consider when examining the sound structure of language. Some topics have been the subject of phonological study for many years and are re-examined in this series in light of new developments in the field; others are issues of growing importance that have not so far been given a sustained treatment. Written by leading experts and designed to bridge the gap between textbooks and primary literature, the books in this series can either be used in courses and seminars, or as one-stop, succinct guides to a particular topic for individual students and researchers. Each book includes useful suggestions for further reading, discussion questions and a helpful glossary.

Already Published in the Series:

Neutralization by Daniel Silverman
Underlying Representations by Martin Krämer
Intonation and Prosodic Structure by Caroline Féry
Phonological Tone by Lian-Hee Wee
Sign Language Phonology by Diane Brentari
Sign Language Phonology

DIANE BRENTARI

University of Chicago
Contents

List of Figures page x
List of Tables xvii
Acknowledgments xvi

1 Introduction: Sign Language versus Gesture; Sign Language versus Speech 1
1.1 Introduction to the Topics of this Volume 1
1.2 Historical Perspectives on Sign Language Phonology 4
1.3 Sign Language and Gesture 6
1.3.1 Neuroimaging 9
1.3.2 Conventionalization 10
1.4 Sign Language and Speech at the Word Level 11
1.4.1 The Core Lexicon 13
1.4.2 The Spatial Lexicon 31
1.4.3 The Non-native Lexicon: Fingerspelling, Mouthings, and the Foreign Component 35
1.5 New Theoretical Contributions to Sign Language Phonology 39
1.5.1 Optimality Theory 39
1.5.2 Cognitive and Usage-Based Approaches 41
1.6 Summary 42
1.7 Further Reading 42

2 Modality Effects 44
2.1 Why Is Communication Modality So Important? 44
2.2 Signal Differences 46
2.3 Phonetic Differences: Perception 49
2.4 Phonetic Differences: Articulation 52
2.5 Complexity 55
2.5.1 Articulatory Complexity 55
2.5.2 Frequency as Complexity 57
2.5.3 Complexity as Expressed by Order of Acquisition
2.5.4 Complexity as Expressed by Phonological Structure
2.6 Prominence: Single versus Multiple Oscillators
2.7 Modality Effects on Phonology
 2.7.1 Movements, Segments, Features: How Are They Organized?
 2.7.2 Sonority
 2.7.3 Sonority, Movement, and Syllable Nuclei
 2.7.4 Syllable Weight
 2.7.5 Morphophonology and Word Shape
2.8 Summary
2.9 Further Reading

3 Iconicity
 3.1 Introduction to Central Issues of Iconicity in Sign Languages
 3.1.1 Types of Iconicity
 3.1.2 Avoiding the “Gesture-Is-Iconic/Language-Is-Not” Trap: Clarifying the Relevant Terms
 3.2 Iconicity across the Lexicon
 3.2.1 Iconicity in Word Building: Movement and Event Structure
 3.2.2 Arbitrary Distribution of Orientation in Iconic Classifier Constructions
 3.2.3 The Feature [Stacked] and Iconicity
 3.3 Iconicity in the Grammar: Agreement
 3.4 Iconicity in Sign Language Processing
 3.5 Conclusion
 3.6 Further Reading

4 Interfaces
 4.1 Introduction to Interface Phenomena in Sign Languages
 4.2 The Language–Gesture Interface
 4.2.1 The Inter-modality Gestural Interface
 4.2.2 The Intra-modality Gestural Interface
 4.3 Interfaces of Phonology and Other Grammatical Components
 4.3.1 Phonetics–Phonology Interface: Constrained Flexibility

vi

Contents

Cambridge University Press
978-1-107-53409-4 — Sign Language Phonology
Diane Brentari
Frontmatter
More Information
Contents

4.3.2 Morphology–Phonology Interface 111
4.3.3 Prosodic Units and Sentence/Discourse Meaning 120
4.3.4 Nondominant Hand (H2)-Spread 126
4.4 Conclusion 130
4.5 Further Reading 131

5 The Emergence of Phonology 132
5.1 Introduction to the Issues 132
5.2 Where Do Phonological Features and Phonological Patterns Come From? 138
5.3 Applying Internal Phonological Principles to Emerging Sign Languages 141
 5.3.1 The Development of Grammatical Non-manuals and Their Alignment 142
 5.3.2 Dispersion and Handshape Morphology within the Phonemic Space 144
 5.3.3 Repetition: Loss and Reorganization of Iconicity in Distinguishing Nouns and Verbs 156
5.4 External Pressures on a Phonological System 159
 5.4.1 Applying Principles External to the Phonological System in Emerging Sign Languages 160
 5.4.2 Are Internal or External Factors More Important in Emerging Phonologies? 162
5.5 Conclusions 164
5.6 Further Reading 165

6 Sign Language Phonological Processing 166
6.1 Introduction 166
6.2 Language Processing of Phonological Units 167
 6.2.1 Production Evidence: Slips of the Hand 167
 6.2.2 Production Evidence: Tip-of-the-Finger Phenomena 168
 6.2.3 Perceptual Evidence: Movement 171
 6.2.4 Perceptual Evidence: Handshape 178
6.3 Phonological Processing and Neighborhood Density 186
6.4 Neurological Mapping of Sign Language Phonology 188
6.5 Conclusions 198
6.6 Further Reading 199
Contents

7 Sign Language Acquisition

7.1 Introduction

7.2 Typical First-Language (L1) Acquisition

7.2.1 Iconicity in L1 Acquisition

7.2.2 IDS and Iconicity

7.2.3 Time Course of L1 Acquisition in ASL Phonology

7.2.4 Acquisition of Classifier Handshapes

7.2.5 Prosodic Acquisition

7.2.6 Acquisition of Fingerspelling

7.3 Second-Language (L2) Acquisition

7.3.1 L2 Acquisition of Sign Parameters

7.3.2 L2 Acquisition and Iconicity

7.3.3 Acquisition of Classifier Constructions in L2 Signers

7.3.4 Acquisition of Prosody in L2 Signers

7.4 The Critical Period for Language Acquisition and the “Phonological Bottleneck”

7.5 Connection between Sign Language Phonology and Reading

7.5.1 The Use of Spoken and Signed Phonological Codes in Deaf Readers

7.5.2 Cross-Modal Activation

7.5.3 Phonological Readiness for Reading in Deaf Children

7.6 Conclusions

7.7 Further Reading

8 Sign Language Phonological Variation and Change

8.1 Introduction

8.1.1 Sources of Data

8.1.2 Language Variation, Change, and Emergence

8.2 Synchronic Variation

8.2.1 Synchronic Variation Based on Linguistic Factors

8.2.2 Synchronic Variation Based on Sociolinguistic Factors

8.3 Diachronic Change

8.3.1 Frishberg’s Contribution

8.3.2 Further Developments in ASL Historical Studies

8.4 Combining Synchronic and Diachronic Sources
Figures

1.1 The two ASL stems **think** (left) and **self** (center), which form the compound **think** ^ **self**

1.2 Possible mechanisms that can facilitate conventionalization of the signifier-signified relationship

1.3 The three components of a sign language lexicon

1.4 Minimal pair contrasts in American Sign Language (ASL) and British Sign Language (BSL)

1.5 Confusion matrix of phonological features employed in Lane et al. (1976)

1.6 The features and parameters of ASL represented as a flat structure (ca. 1980)

1.7 The ASL sign **inform**

1.8 Four post-Stokoe models of sign language phonological representation

1.9 Hierarchical organization of selected fingers and orientation

1.10 Binary branching nodes of the handshape feature structure in the Prosodic model (Brentari, 1998)

1.11 Polymorphemic classifier predicate in ASL meaning **two-people–hunched–go forward–carefully**

1.12 The timing of the two hands’ articulation in classifier constructions hints at constituent structure

1.13 The ASL manual alphabet

1.14 The BSL manual alphabet

1.15 Partially lexicalized fingerspelled forms in BSL and ASL

1.16 Closed and open variants of -E- in ASL fingerspelling

2.1 Typical and distalized production of the ASL sign **HARD**

2.2 The joints of the arm that generate movements in sign languages, from largest to smallest with their associated phonological features
List of Figures

2.3 The hierarchical organization of movement subtypes in the Prosodic model 61
2.4 Results from Berent et al. (2008) for Korean, showing that a spoken language with no consonant clusters respects the Sonority Sequencing Principle (SSP) 63
2.5 (repeated from Figure 1.1) THINK has a movement when produced as a single sign, but not in the compound THINK^SELF 65
2.6 The full and reduced fingerspelled form in ASL for P-H-O-N-O-L-O-G-Y 66
2.7 Sample stimuli from Berent et al. (2013) with four possible combinations of syllables and morphemes 68
2.8 Results from the four experiments in Berent et al. (2013) 69
2.9 Examples of word structure in the four types of languages, resulting from crossing the number of syllables with the number of morphemes 73
3.1 The distinctive use of the [direction] feature in the ASL minimal pair TEND and BE-MOVED/TOUCHED 81
3.2 Telic and atelic verbs according to the Event Visibility Hypothesis (Wilbur, 2010) and their schematic phonological representations 85
3.3 Distribution of phonological and morphological uses of orientation in ASL classifier predicates 88
3.4 Examples of [stacked] handshapes in the three components of the ASL lexicon 90
3.5 Examples of morphological use of the [direction] feature in ASL 91
3.6 Examples of the phonological expression of verb agreement in ASL 92
3.7 Sample stimuli from Bosworth & Emmorey (2010) showing semantically related iconic, semantically related non-iconic, and unrelated non-iconic ASL signs 96
3.8 Possible mechanisms that can facilitate conventionalization of the signifier–signified relationships 97
4.1 Three forms of UNDERSTAND: the citation form, UNDERSTAND-A-LITTLE, and UNDO–UNDERSTANDING utilizing phonemic features of the handshape 103
4.2 Handshapes in core, foreign, and spatial vocabulary to investigate phonetic preferences 108
4.3 The [stacked] feature used allophonically in the ASL “core” sign SEE 109
xii

List of Figures

4.4 Flexion of the metacarpal joint used allophonically in two ASL classifier forms:
 person move away
 and
 person come towards 110

4.5 Examples of different forms of Prosodic words in ASL 115

4.6 The ASL sentence boy say you my friend without
 and with a point-of-view predicate 118

4.7 Changes in the non-manual markers between the two
 I-phrases in a conditional phrase of Israeli Sign Language 124

4.8 The progressive spread of the nondominant hand in
 a phonological phrase in ASL 127

4.9 The progressive spread of the nondominant hand in two
 parenthetical phrases in ASL 128

4.10 The proportion of H2-Spread in conversation and
 in narratives in Sign Language of the Netherlands 129

5.1 Descriptions of motion and location events by
 an American gesturer and a signer of ASL 133

5.2 Examples of object handshapes and handling handshapes 146

5.3 Feature organization for joints and selected fingers
 within the Handshape structure of the Prosodic model 146

5.4 Handshapes with low, medium, and high joint complexity
 within the Handshape structure of the Prosodic model 147

5.5 Handshapes with low, medium, and high selected finger
 complexity within the Handshape structure of the Prosodic
 model 147

5.6 Examples of low-, medium-, and high-complexity
 handshapes for joints and selected fingers 148

5.7 Examples of vignettes used to elicit object handshapes
 (left) and handling handshapes (right) 149

5.8 Average overall complexity across adult study groups
 in Nicaragua 150

5.9 Joint and selected finger complexity across signers
 and gesturers in the United States, China, Italy, and
 Nicaragua 152

5.10 Selected finger complexity in adult signers, homesigners,
 and gesturers 154

5.11 Average finger group complexity for a single Nicaraguan
 child at five time points 154

5.12 Comparison of NSL1, NSL 2, and NSL3 signers
 on the four types of devices used to express the noun–verb
 distinction 157

5.13 Comparison of homesigners on the four types
 of devices used to express the noun–verb distinction 158
List of Figures

5.14 Two variants of dog and one family’s form of egg in Al-Sayyid Bedouin Sign Language 161
6.1 A slip of the hand in German Sign Language involving regressive assimilation of the whole handshape 170
6.2 A slip of the hand in ASL involving regressive assimilation of the selected fingers 170
6.3 Perceptual salience judgments from signers and non-signers for lexical and morphological movements 174
6.4 Example stimuli of Berent et al. (2016) 177
6.5 The two parts of an ideal categorical perception result 179
6.6 Handshape intervals for a phonemic and allophonic handshape pair in ASL 181
6.7 Example stimuli from Best et al. (2010) with intervals for a spread and unspread handshape (pseudosigns) 182
6.8 Sample stimuli from the animated video stimuli used in Morford et al. (2008) with intervals for a phonemic handshape pair in ASL 182
6.9 Sample stimuli from McCullough and Emmorey (2009) showing intervals for ASL grammatical and affective facial expressions 183
6.10 Example stimulus handshapes and signs used in Eccarius (2008) for flat and round handshapes 185
6.11 Regions in the left hemisphere attributed to language processing 190
6.12 Phonemic substitutions in selected finger specifications for handshapes produced by an aphasic ASL signer 192
6.13 Example stimuli from MacSweeney et al. (2004) showing sequences of complex forms in a nonlinguistic system (“TicTac”) and British Sign Language (BSL) 194
6.14 Stimuli from the three tasks in MacSweeney et al. (2008) to assess phonological processing in BSL 195
7.1 Low- and high-frequency cyclical movements in sign- and speech-exposed infants 207
7.2 Error rates on the three manual parameters of signs in four deaf children of deaf parents 209
7.3 Stages of handshape acquisition 211
7.4 Recall of fingerspelled English words in deaf readers when similarity/dissimilarity was based on spoken English or on the manual form of the fingerspelled word 217
7.5 Mean frequency of proximalization versus distalization of movement in the imitation of single- and
multiple-jointed ASL signs in deaf and hearing L2 learners

7.6 The interaction between iconicity and complexity in L2 BSL production

7.7 Schema of the hypotheses considered in Brentari et al. (2012b) regarding the prosodic patterns of L1 deaf, L1 hearing, and L2 hearing ASL signers

7.8 Evidence for the “phonological bottleneck.” Effects of late L1 acquisition showing that as age of acquisition of an L1 increases, the number of phonological errors increases, and semantic errors decrease

7.9 Mean phonological and semantic priming effects for ASL sign recognition as a function of age of acquisition

7.10 Sample items from the phoneme judgment task and phoneme manipulation task reported in Hirshorn et al. (2015)

8.1 Variants of the ASL sign angry showing historical change from a one- to a two-handed variant and then back to a one-handed variant again

8.2 The ASL sentence translated into English as I cook articulated in citation form and with regressive assimilation

8.3 The ASL sign deaf in citation form and in two non-citation variants

8.4 The ASL sign know in citation form and in a non-citation variant after undergoing the phonological rule of displacement

8.5 The grid used in McCaskill et al. (2011) to determine if a sign was produced in “typical” signing space or in a larger signing space, illustrated by two variants of the ASL sign light

8.6 The ASL sign quiet in citation form and after undergoing the phonological rule of Weak Drop

8.7 Normalized pairwise variability index plotted for Sign Variety ((m)ainstream, (b)lack), Age (older (squares), younger (circles)), and Gender ((m)ale, (f)emale) for twenty-three individuals

8.8 Phonological changes from Old French Sign Language (O-FSL) to Modern ASL (ca. 1965) showing a move towards concentration of lexical information on the hands in the sign compare

List of Figures
List of Figures

8.9 Phonological changes from Old French Sign Language (O-FSL) to Modern ASL (ca. 1965) showing displacement toward the midline in the ASL sign HELP (top) and SWEETHEART (bottom) 256
8.10 A Type 3, Type 2, and Type 1 two-handed version of the ASL sign WHISKEY 257
8.11 (repeated from Figure 1.1) The two ASL stems THINK (left) and SELF (center), which form the compound THINK^SELF translated as decide for oneself (right). The compound (right) has two morphemes but just one syllable, just one movement 258
8.12 Three historical variants of the ASL sign WHO 259
8.13 Historically related ASL signs (left) WHICH, WITH, and BOSS/CHIEF 260
8.14 The ASL sign FULL and Italian Sign Language sign BOTTLE. Both signs have undergone phonological change, whereby both hands move in a symmetrical fashion 264
8.15 Form of the sign BIRTHDAY used by older and younger signers of LIS 264
8.16 Form of SIGN LANGUAGE used by older and younger signers of Italian Sign Language (LIS) showing a change to a relatively more marked handshape 265
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Differences between signed and spoken languages at the level of the signal, phonetic system, and phonological system</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Differences between affective and grammatical facial expressions</td>
<td>105</td>
</tr>
<tr>
<td>4.2</td>
<td>Morpho-syntactic and corresponding prosodic units</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>The distribution of the number of morae in core lexical stems of FinSL</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Narrative by one of the first users of Al-Sayyid Bedouin Sign Language (ABSL; cf. Sandler et al., 2011b)</td>
<td>142</td>
</tr>
<tr>
<td>5.2</td>
<td>Narrative by one of the two older signers of ABSL (cf. Sandler et al., 2011b)</td>
<td>143</td>
</tr>
<tr>
<td>5.3</td>
<td>Narrative by one of the two younger signers of ABSL (cf. Sandler et al., 2011b)</td>
<td>144</td>
</tr>
<tr>
<td>6.1</td>
<td>Comparison of signed and spoken language “slips” in German Sign Language and German</td>
<td>169</td>
</tr>
<tr>
<td>7.1</td>
<td>Sample sentence pairs for the discrimination task reported in Boechner et al. (2011)</td>
<td>220</td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to thank my colleagues who provided support while I was preparing this manuscript by reading chapters or helping with the manuscript preparation itself (in alphabetical order): Iris Berent, Rain Bosworth, Marie Coppola, Karen Emmorey, Jordan Fenlon, Laura Horton, Aurora Martinez del Rio, Kathryn Montemurro, and Gary Morgan. Also, special thanks to my sign language phonology seminar in the fall of 2018 that helped me iron out the final kinks of the text and to Petra Eccarius who assisted with excellent comments, as well as editorial and logistical help. All of you helped to make the text clearer and more readable. All of the mistakes are my own.

I’d like to acknowledge my funding sources that helped support this work over the years from NSF grants 0112391, 0547554, 1227908, and 1400998. I would also like to thank the Center for Gesture Sign and Language at the University of Chicago, particularly my co-directors Susan Goldin-Meadow and Anastasia Giannakidou, for the most stimulating group of colleagues and students one could ever hope for.

I am extremely grateful to Susan Elizabeth Rangel and David Reinhart for being the sign language models for the original photos in this book, and to Andrew Gabel, Rita Mowl, Drucilla Ronchen, and Robin Shay for their help and advice on many issues concerning ASL and the Deaf community. And a big thank you also goes to all of the deaf and hearing people – too numerous to name – who helped with this research over these last twenty years in Nicaragua, Italy, the United Kingdom, Hong Kong, and many other sites. Without your patience and generosity, this work would not be possible.

And, always, thank you to my husband and conversation partner in all things, Arnold I. Davidson, who is a constant reminder of not only how important the life of the mind is but also how important it is to have someone with whom to share it.