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Abstract

Surveying some of the recent developments on approximate subgroups and super-
strong approximation for thin groups, we describe the Bourgain-Gamburd method
for establishing spectral gaps for finite groups and the proof of the classification of
approximate subgroups of semisimple algebraic groups over finite fields. We then give
a proof of the super-strong approximation for mod p quotients via random matrix
products and a quantitative version of strong approximation. Some applications to
the group sieve are also presented. These notes are based on a series of lectures given
at the 2013 Groups St Andrews meeting.

1 Introduction

In the early 1980’s Matthews-Vaserstein-Weisfeiler [69], and then Nori [72] and We-
isfeiler [101] (independently) proved the following theorem:

Theorem 1.1 (Strong-approximation theorem) Suppose G is a connected, sim-
ply connected, semisimple algebraic group defined over Q, and let ' < G(Q) be a
finitely generated Zariski-dense subgroup. Then for all sufficiently large prime num-
bers p, the reduction I'y, of " is equal to G,(IF,).

For example, if I' < SL,(Z) is a finitely generated Zariski dense subgroup, then
I'), = SL,,(Z/pZ) for all large enough prime numbers p. When p is large enough, the
algebraic group G (viewed as a closed subgroup of some GL;,) admits a smooth reduc-
tion defined over F,,, which we denote by G,. Since I' is finitely generated, there are
finitely many primes p1,...,p; (appearing in the denominators of the matrix entries
of S) such that I" belongs to G(Z[1/p1,...,1/px]) == GNGL,(Z[1/p1,...,1/pk]), and
the reduction modulo p map is well-defined on this subgroup if p is large enough.

The result fails if G is not simply connected (e.g., the image of SLy(Z) in PGLy(F,)
has index 2 when p > 2). However every connected absolutely almost simple algebraic
group admits a simply connected finite cover to which we can lift I' and apply the
theorem. This yields that [G,(F,) : I';] is nevertheless always bounded (for p large)
by a constant depending only on G (one can take 1+ rank(G), see [72, Remark 3.6]).

A similar result holds for groups defined over number fields instead of Q. Its proof
reduces to the case of Q by suitable restriction of scalars. See Remark 6.4 below (see
also [101]).

That the result holds when I' is an S-arithmetic group I' = G(Z[1/p1,...,1/pm])
was known much earlier by work of Kneser [49] and Platonov [74] in particular. See
[75, Chapter 7]) and [82].
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Theorem 1.1 is then of particular interest when the group I is not a full S-arithmetic
subgroup of G but has infinite index in one of them, while still remaining Zariski dense
in G (S-arithmetic subgroups are Zariski dense by the Borel density theorem). Such
a group is called a thin subgroup of G in recent terminology due to Peter Sarnak [91].

What we call super-strong approzimation is the fact stated in Theorem 1.2 below
that I" not only surjects onto G, (IF,) for p large but that the associated Cayley graphs
of G,(IF,) form a family of expanders. The goal of these notes is to give a proof of
this fact, give some applications, and introduce the reader to the various techniques
used in the proof.

It is of course not the purpose of this survey to give a complete introduction to
expander graphs and for that matter we refer the reader to the many sources on the
subject starting with Lubotzky’s monograph [61] and survey [63] (see also [38] and
[51, 96, 10]). Let us simply recall that to every finite k-regular graph G is associated a
combinatorial Laplace operator acting on the (finite dimensional) space of functions
on the vertices of the graph. It is defined by the formula

M) = f@) 3 Y Fw),

Yy~

where y ~ x is a vertex connected to x by an edge. This operator is symmetric and
non-negative. Its eigenvalues are real and non-negative. The eigenvalue 0 comes with
multiplicity one if the graph is connected and the first nonzero eigenvalue is denoted
by A1(G) and satisfies:

M(G) = mf{(AS, ). Ifl2 =1, f(x) =0} (1.1)

An infinite family of k-regular graphs (G, )n>1 is said to be a family of expanders
if there is € > 0 such that for all n > 1,

A1 (gn) > €.
We are now in a position to state the following strengthening of Theorem 1.1.

Theorem 1.2 (Super-strong approximation) Suppose G is a connected, simply
connected, semi-simple algebraic group defined over Q, and let I’ < G(Q) be a Zariski-
dense subgroup generated by a finite set S. Then there is ¢ = €(S) > 0 such that for
all large enough prime numbers p, the reduction I'y, of T' is equal to G,(Fy,) and the
associated Cayley graph Cay(Gy(Fp), Sp) is an e-expander.

Here S, is the image of S by reduction modulo p. As before, the result also holds
if G is not assumed to be simply connected, but I', may then only be a subgroup of
Gp(Fp) whose index is nevertheless bounded independently of p, while Cay(L,,Sp)
remains an e-expander.

This theorem is a special case of a result due to Salehi-Golsefidy and Varju [87],
which asserts that the conclusion also holds for quotient modulo a square free inte-
ger and even when the connected algebraic group G is only assumed to be perfect.
Their proof follows the so-called Bourgain-Gamburd expansion machine, which can
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be implemented in this context in part thanks to the recent results on approximate
subgroups of linear groups due to Pyber-Szabé [80] and Breuillard-Green-Tao [19].
In these notes we describe the Bourgain-Gamburd method as well as the above
mentioned results on approximate subgroups and finally give a complete proof of
Theorem 1.2 (i.e., of super-strong approximation for mod p quotients) following a
somewhat alternate route than in [87] by use of random matrix products [15].

1.1 The Lubotzky alternative and its expander version

One can formulate a version of the strong approximation theorem, which is valid
for every finitely generated subgroup of GL4(k), where k is an arbitrary field of
characteristic zero (one can also deal with the positive characteristic case thanks to the
work of Pink [73], however no super-strong version is known in positive characteristic
thus far). When the group I' = (S) we start with is non virtually solvable, one can
show that there is a non trivial connected and simply connected semisimple algebraic
group G defined over Q and a group homomorphism from a finite index subgroup of
I’ into G(Q) with a Zariski-dense image (see [68, Prop. 16.4.13] and the discussion
that follows). This allows to then apply the strong-approximation theorem 1.1 and
deduce that I'g admits G,(IF,,) as a quotient for almost all p.

This information was used in a key way by Lubotzky and Mann in their work on
subgroup growth [64]. For this version of strong approximation, called the Lubotzky
alternative, we refer the reader to the notes devoted to it and its various refinements
in the book by Lubotzky and Segal on subgroup growth ([68, 16.4.12], see also [48]).
Strengthened by the super-strong approximation theorem, this gives the following
statement:

Theorem 1.3 (Lubotzky super-alternative) Let S be a finite symmetric subset
of GLy(k), where k is a field of characteristic zero. Then the subgroup I' = (S)
generated by S contains a subgroup I'g whose index m in I' is finite and bounded in
terms of d only, such that

e cither the subgroup L'y is solvable,

e or there is a connected, simply connected, semisimple algebraic group G de-
fined over Q, such that for all large enough primes p € N, there is a surjec-
tive group homomorphism p, from Iy to G,(Fp) such that the Cayley graph
Cay(Gy(Fp), pp(S0)) is an e-expander, for some € > 0 independent of p, where
So is a subset of S®™ generating T'g.

Note that given a group I' generated by a symmetric set S, then every subgroup
of finite index Iy is finitely generated by a symmetric subset contained in $?™~1, if
m is the index of I'g in I" (e.g., see [19, Lemma C.1J).

A version of Theorem 1.3 for a bounded number of primes is also true: given large
enough distinct primes p1, ..., pg, the Cayley graphs Cay(G(Fp,) x...x G(Fp,), (pp, X
... %X pp,.)(S)) are e-expanders for a uniform € > 0 independent of the number of primes
k. We will prove this stronger version only with an ¢ depending on k& (but not on
the choice of k primes). See Theorem 6.3 below. One needs the works of Varji [100]
and Salehi-Golsefidy-Varji [87] to get this uniformity in the number of primes, but
the proof is rather more involved. Note that at any case € depends on S and it is an
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open question whether this dependence can be removed (see [16] for partial results in
this direction).

1.2 The group sieve method

Knowing that the finite quotients Cayley graphs are expanders is a very useful infor-
mation for a number of applications to group theory and number theory, in particular
it is the basis of the so-called Group Sieve, pioneered by Kowalski [52, 53], Rivin [83],
and Lubotzky-Meiri [65, 66] and of the Affine Sieve of Bourgain-Gamburd-Sarnak [7].
See [50] and [55] for two nice expositions.

Roughly speaking, the expander property allows one to give very good bounds on
the various error terms that appear when sieving modulo primes. In these notes,
we will give a general statement, the group sieve lemma (Lemma 7.3 below), due
to Lubotzky and Meiri, which allows to show that a subset Z of a given finitely
generated linear group is exponentially small, provided its reduction modulo p does
not occupy too large a subset of the quotient group for many primes p. For this
version of the group sieve, expansion for pairs of primes is sufficient (i.e., we need that
G(F,,) xG(F,,) expands for p; # ps), so our version of the Lubotzky super-alternative
above will be enough. Expansion for all square free moduli is necessary however,
and sometimes crucial, in other situations, such as in the Affine Sieve pioneered by
Bourgain-Gamburd-Sarnak [7] and further developed by Salehi-Golsefidy-Sarnak [86],
Bourgain and Kontorovich [9] and others.

The conclusion of the super-strong approximation theorem (Theorem 1.2) can be
reformulated in the following way: there is ¢ > 0 depending only on the generating
set S such that for every real valued function f on the group G,(F,), such that

ZzeGP(FP) f(x) =0and HngQ = Zzer(JFp) [f@)? =1,

(Af, f) >,
where
1 1 _
(Af. f) = ﬁz lls- f— fll7 = ﬁz Yo ) = f@)
seS s€8 2€Gy(Fp)
Let S, = {s1,...,5%} be the image of S under the reduction modulo p map and pg,

be the uniform probability measure on S, assigning equal mass 1/k (= 1/|S| for p
large enough) to each element of S,,.

1
HSp = E((SSl +"‘+5Sk)

Note that pg, = Id — A as operators on (*(Gp(F,)), and hence its operator norm
on £3(G,(F,)), the orthogonal of constants, satisfies:

s, lall <1

It is in this form that the theorem is used in its applications to the group sieve
method. For example it allows Lubotzky and Meiri [65] to establish the following
result about the scarcity of proper powers in non virtually solvable linear groups. A
group element is called a proper power if it is of the form g™ for some integer n > 2
and some other group element ¢ (from the same group).
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Theorem 1.4 (Lubotzky-Meiri [65]) Let I' < GL4(C) be a finitely generated sub-
group and let pg be the uniform probability measure on a finite symmetric generating
S. Assume that T is not virtually solvable. Then the set Pr of proper powers in I is
exponentially small in the sense that there is ¢ = ¢(S) > 0 such that for every n € N,

ps(Pr) <e .

Here 1% is the n-th convolution power of the probability measure pg on I'. Equiv-
alently, it is the distribution at time n of the simple random walk starting at the
identity on the associated Cayley graph Cay(I",S). Or more explicitly:

H{w, |w| =n,w € Pr}|
K =Py = )
s (Pr) weW,, . (Pr) {w, [w| = n}]

where W), 1 is the set of (non reduced!) words w of length |w| = n in the formal
alphabet made of letters from the set S, and w its value as a group element when
computed inside I'. One can analogously count reduced words of length n in the free
group and get the same result, but we note in passing that obtaining a result of this
kind for the average with respect to the word metric on I' induced by S seems out of
reach at the moment, because little is known about the balls for the word metric on
a group of exponential growth.

1.3 On the proof of the super-strong approximation theorem

Theorem 1.2 was first proved in the special case of subgroups of SLy(Z) in a remarkable
breakthrough by Bourgain and Gamburd [5]. They deduced the expansion by showing
that the simple random walk on the finite quotient SLy(Z/pZ) must equidistribute
very fast, indeed after only O(logp) steps. In doing so they reversed the traditional
way of looking at things: traditionally spectral gaps estimates were proven by other
methods (e.g., representation theory, property (1), etc.) and were then used to prove
fast equidistribution of random walks. Bourgain and Gamburd reversed this order,
first proving equidistribution and then deducing the gap (see Proposition 3.3 below
for the equivalence between spectral gap and fast equidistribution).

This idea can be traced back to the seminal work of Sarnak and Xue [92], which
gave a new, softer, approach toward Selberg’s 3/16 theorem (i.e., the first eigenvalue
of the Laplace operator on quotients of the hyperbolic plane by congruence subgroups
of SL(2,Z) is at least 3/16, see [93]). They exploited, via the trace formula, the high
multiplicity of the spectrum coming from the (p—1)/2 lower bound on the dimension
of the smallest non trivial complex representation of SLa(F,) (this bound goes back
to Frobenius) and a soft combinatorial upper bound on the number of lattice points
in a ball of radius roughly logp. We refer the reader to the expository papers of P.
Sarnak [90, 89], where this method and its history (in particular the role of Bernstein
and Kazhdan) is described.

In his thesis [29] Gamburd pursued this method and established the first spectral
gap result valid for thin groups: he showed that if a finitely generated subgroup I' of
SL2(Z) is large enough in the sense that the Hausdorff dimension of its limit set on
PY(R) is at least 2, then the spectrum of the associated (infinite volume) quotients
of the hyperbolic plane modulo the congruence subgroups I', := I N ker(SLo(Z) —
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SL2(Z/pZ)) admits a uniform lower bound independent of p. In turn the resulting
Cayley graphs of SLy(Z/pZ) are expander graphs.

Bourgain and Gamburd [5] pushed the method even further to implement it for all
Zariski-dense subgroups of SLy(Z) with no restriction on the limit set. The structure
of their proof retained the same patterns, playing the high multiplicity lower bound
against a combinatorial upper bound via the trace formula applied to convolution
powers of a fixed probability measure on the generating set. Achieving this combi-
natorial upper bound is the gist of their work: they brought in an important graph
theoretic result (the Balog-Szemerédi-Gowers lemma, a parent of the celebrated Sze-
merédi regularity lemma) revisited in this context by Tao [97] to show that convolution
powers of probability measures decay in £2 norm (the so-called £2-flattening) unless
the measure charges significantly a certain approximate subgroup. That there exists
no interesting approximate subgroup of SLy(IF,) was established for this purpose by
Helfgott [36]. The combinatorial upper bound (on the probability of return to the
identity of the simple random walk at time roughly log p), and hence the spectral gap,
then reduces to establishing a certain non concentration estimate on subgroups for
random walks on SLs(Z) (see Theorem 5.1), which in this case can easily be deduced
from Kesten’s theorem [47].

This new method became known as the Bourgain-Gamburd expansion machine
(see, e.g., the papers [20, 22] as well as the forthcoming book [96]). Its scope goes
beyond SLy(IF,) and, quite remarkably, it can potentially be applied to any finite
group (see Proposition 3.1 for a precise formulation of the method and its ingredients).
It was understood early on that the scheme of the proof in [5] was general enough that
it could be made to work in the general setting of Theorem 1.2, provided one could
establish each step in the right generality. The bounds on the dimension of complex
representations are well-known thanks to classical work of Landazuri-Seitz [57]. The
graph theoretic lemma needs no modification in the general setting. The remaining
two items however require deeper consideration. The classification of approximate
groups, first established by Helfgott for SLa(F,,) and SL3(IF,), was finally completed
in the general case by Pyber and Szabé [80] and independently by Breuillard-Green-
Tao [19]. Regarding the upper bounds on the probability of hitting a subgroup,
there are two known ways to achieve them. The first is to use the theory of random
matrix products, and this was done in subsequent work of Bourgain-Gamburd [6],
but only in the special case of subgroups of SL,,(Z), because the estimates from the
theory of random matrix products required to deal with the general case were lacking.
The second consists in applying a ping-pong argument akin to the proof of the Tits
alternative [99], and this was performed by Varji in his thesis [100] and subsequently
by Salehi-Golsefidy and Varju in their joint work [87], in which they establish Theorem
1.2 in full generality.

In the remainder of these notes we will prove Theorem 1.2 following each of these
steps very closely. The only novelty in our proof lies in the last step: thanks to
[15], we now understand how to use random matrix products to prove in the desired
generality the required upper bounds for the probability of hitting a subgroup (the
non-concentration estimates). This approach is somewhat more direct than the one
taken by Salehi-Golsefidy and Varjui in [87], and it is very close to what Green, Tao
and I had in mind, when we announced a proof of Theorem 1.2 in [18, Theorem 7.3]
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in the special case of absolutely simple groups over Z, but never came to the point of
writing it up in full.

As already mentioned Salehi-Golsefidy and Varju [87] actually proved a strong
version of Theorem 1.2 showing the expansion property also for the quotients modulo
a square free integer, and assuming only that G is perfect (which is also a necessary
condition for expansion). See Theorem 6.5 below. That strong version is crucial for
certain applications to sieving in orbits (& la Bourgain-Gamburd-Sarnak [7]), but its
proof is much more involved. Often it is enough to have Theorem 1.2, or its extension
to two or a bounded number of primes, which is not more costly. That will be the case
for the applications presented in this paper. This, I thought, was enough justification
for writing a complete proof of super-strong approximation for prime moduli in one
place.

1.4 Outline of the article

In Section 2 we present a proof of the strong approximation theorem of Matthews,
Vassertein and Weisfeiler following Nori’s proof. Our treatment yields a quantitative
version in the sense that it gives a upper bound on the first p for which the surjectivity
of the reduction mod p holds in terms of the height of the generating set. Section 3 is
devoted to the Bourgain-Gamburd machine: we state very general conditions on the
Cayley graph of an arbitrary finite group that are sufficient to establish a spectral gap.
Section 4 is devoted to approximate subgroups of linear groups over finite fields. We
prove there the theorem of Pyber-Szabé and Breuillard-Green-Tao. In Section 5 we
discuss random matrix products and a general non-concentration on subgroups result
for random walks on linear groups. Finally in Section 6 we combine the results of
the preceding three sections to complete the proof of the super-strong approximation
theorem in the case of mod p quotients (Theorems 1.2 and 6.3). The final section
is devoted to applications to the group sieve method and results of Aoun, Jouve-
Kowalski-Zywina, Lubotzky-Meiri, Lubotzky-Rosenzweig and Prasad-Rapinchuk on
generic properties elements in non virtually solvable linear groups.

2 Nori’s theorem and a quantitative version of strong approximation

It was Matthews, Vaserstein and Weisfeiler [69] who first proved the strong approxi-
mation theorem for Zariski-dense subgroups, i.e., Theorem 1.1, in the case when G is
absolutely simple. Their proof made use of the (brand new at the time) classification
of finite simple groups. Another, classification-free proof was found roughly at the
same time and independently by M. Nori, yielding also the case G semisimple, as a
consequence of the following general result proved in [72].

Theorem 2.1 (Nori [72]) Let H be a subgroup of GL,(F,), and H" the subgroup
generated by its elements of order p. If p is larger than some constant c(n) depending
only on n, then there is a connected algebraic subgroup H of GL, defined over IF,

such that HT coincides with ﬁ(]F,Q'*‘ Moreover there is a normal abelian subgroup
A < H such that [H : AH™] is bounded in terms of n only.

Observe that if p > n, then elements of order p in GL,(IF,) are precisely the
unipotent matrices: indeed P = 1 is equivalent to (z — 1)? = 0 for « € GL,(FF,,) and
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hence to z = 1 4+ n, where n is a nilpotent matrix. As Nori explains in [72, Remark
3.6.], the index of H(F,)" in H(FF,) is bounded by a function of n only. So the
meaning of Nori’s theorem is that finite subgroups of GL,,(IF,) generated by elements
of order p are essentially algebraic subgroups, if p > ¢(n).

The key feature of Nori’s theorem is that no assumption whatsoever is made on
the subgroup H. Hence Nori’s theorem can be seen as a description of arbitrary
subgroups of GL,,(F,). It can be viewed as complementing the celebrated theorem
of Camille Jordan [44] on finite subgroups of GL, (K) whose order is prime to the
characteristic of the field K: such a group admits an abelian subgroup whose index is
bounded by some function of n only. Nori’s theorem explains what happens when the
characteristic divides the order of the finite group: recall that a finite group has an
element of prime order p if and only if its order is a multiple of p (Cauchy’s theorem).

Jordan’s theorem is usually quoted for subgroups of GL,(C), but this stronger
version can be derived easily by lifting the group to C (see [72, Theorem C]). In fact
Jordan had already proved this stronger version in his original paper: his proof is
purely algebraic and applies to any finite subgroup of GL,,(K) all of whose elements
are semisimple (or equivalently to finite subgroups without a non trivial unipotent
element), where K is any algebraically closed field (see [11] for a discussion).

Textbooks presenting Jordan’s theorem usually give a different, more geometric
treatment, due to Frobenius, Bieberbach and Blichfeldt. Jordan’s own argument
seems to have been forgotten for more than a hundred years until Larsen and Pink [59]
rediscovered it and generalized it considerably to obtain a classification of all finite
subgroups of GL4 in every characteristic. The Larsen-Pink theorem is more general
than Nori’s result stated above in that it applies to finite subgroups of GL4 regardless
of the field and the size of the characteristic. We will comment on the Larsen-Pink
theorem further below, when we discuss approximate subgroups of linear groups.
The proof of the Larsen-Pink theorem, which by the way is also independent of the
classification of finite simple groups, plays a key role in the structure theorem for
approximate subgroups of linear groups (see Theorem 4.5 below).

For the applications to strong and super-strong approximation, we will not need
the full force of Theorem 2.1 above. Rather the following important special case will
be sufficient.

Theorem 2.2 (Sufficiently Zariski-dense subgroups) There is M = M(d) such
that the following holds. Letp > M be a prime number and G, < GLg be a semisimple
simply connected algebraic group defined over Fp,. If a subgroup H < G,(F,) is not
contained in a proper algebraic subgroup of G, of complexity at most M, then it must
be equal to G,(IF,).

We say informally that a closed algebraic subvariety of GL; has complexity at most
M if it can be defined as the vanishing locus of a finite set of polynomials such that
the sum of their degrees in each variable is at most M. See [19] for background on
this notion. It is particularly useful in positive characteristic: saying that a finite
subgroup of GLd(IF‘T,) is algebraic is meaningless, because every finite subgroup is
an algebraic subset with several (possibly many) irreducible components. However
putting a bound on the complexity forces a bound on the number of irreducible com-
ponents [19, Lemma A.4] and hence restricts the class of finite subgroups drastically
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and leads to interesting statements, such as the above.

We now sketch Nori’s proof of Theorem 2.2. A similar argument is due to Gabber,
see [46, Thm 12.4.1]. Pushing this idea a bit further allows Nori to also prove Theorem
2.1.

Proof (sketch) If H had no non trivial unipotent element, it would have an abelian
subgroup of bounded index by Jordan’s theorem. But this would violate the assump-
tion that H is sufficiently Zariski-dense. So H contains a unipotent element, which
we may write in the form h = exp &, for some nilpotent matrix . The F,-span Vg
of all H-conjugates of £ is invariant under the adjoint action of H. The assumption
that H is sufficiently Zariski-dense implies that Vg must be the full F,-Lie algebra of
Gy in gly(Fp). Pick unipotent elements hy,...,hq € H such that the corresponding
&’s form a basis of Lie(G,).

Now consider the map @ : ngm(} — Gp(Fp), (t1,....ta) — hil e hff. Note that
® is a polynomial map whose degree is bounded in terms of d only. Its image lies in
H. We claim that there is a constant ¢ = ¢(d) > 0 such that |Im ®| > cp?. Indeed,
the Jacobian of ® is not identically zero, so outside its vanishing locus (a proper
subvariety, hence a subset of size O(p?~!)) the fibers of ® are of bounded cardinality.
This implies the desired bound.

Now since there are positive constants ¢y, cp such that c;p? < |G, (F,)| < cap? (e.g.,
see [72, Lemma 3.5.]), we get that the index [G,(F),) : H] is bounded. However since
G is simply connected, G,(F,) is an almost direct product of quasi-simple groups and
thus has no subgroups of bounded index when p is large (Kneser-Tits for IF,,, see [75],
see also Remark 3.4). Hence H = G,(F,). O

Nori’s proof of strong approximation (i.e., of Theorem 1.1) is based on Theorem
2.2 alone. We will explain this argument below. It turns out that this argument even
yields a quantitative lower bound on the first prime number for which we can claim
that ') = G,(Fp) in terms of the height of the generating set of I'. Namely:

Theorem 2.3 (Strong approximation, quantitative version)

Suppose G < GLg is a connected, simply connected, semisimple algebraic group de-
fined over Q. Then there are constants py,Co = 1 such that if S C G(Q) is a finite
symmetric set generating a Zariski-dense subgroup I' = (S) of G, and Mg denotes the
mazximal height of an element of S, then for every prime number p > max{po, Mgo},
the reduction I'), of T is equal to G,(IF,).

Here the height H(s) of an element s € GL4(Q) is defined naively as the maximum
of the numerators and denominators appearing in the expressions of the matrix coef-
ficients of s as irreducible fractions. The bound py is related to the bound ¢(n) from
Nori’s theorem and to pys from Lemma 2.7 below. There is very little control on this
bound in general (see [87, Appendix] for a discussion of this issue).

Several other proofs and extensions of Theorem 1.1 (to groups defined over number
fields, to positive characteristic, etc.) have since been found. For those we refer the
reader to the original articles, in particular [101], [72], [41], [73], and to the chapter on
strong approximation in the recent book by Lubotzky and Segal [68] or in Nikolov’s
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lecture notes in [48, chapter II]. We also recommend reading Rapinchuk’s recent
survey [82], which gives a thorough overview of strong approximation.

We now pass to the derivation of Theorem 2.3 from Nori’s theorem. First, we
replace the naive height with another height, which is better suited for our purposes
since it is sub-additive. Given a € GL4(Q), set

h(a) =) log™ ||l
Pp,00

where the sum is over all prime numbers p as well as the infinite place co. Here
log™ := max{log,0}, and [lal|, denotes max;; |a;j|,, the maximum p-adic absolute
value of a matrix entry a;; of a, while ||a||« is the operator norm of a for the standard
Euclidean norm on R?. The following is straightforward:

Lemma 2.4 (a) The height h(a) is sub-additive, i.e., for all a,b € GLy4(Q),
h(ab) < h(a) + h(b),

and (b) it is comparable to the naive height H(a), namely, for all a,

2

H(a) < " < d(H(a))".
We conclude that for all ay,...,a, € GL4(Q),
H(ay - ... an) <d"(H(ay) - ...  H(an)* (2.1)

Combined with the next lemma, this inequality allows us to assume, in the proof
of Theorem 2.3 that T is generated by two elements, i.e., that S := {1,a*!,b*}.

Lemma 2.5 (Reduction to 2 generators) Let G be a semisimple algebraic group
over C. Then there is ¢ > 0 such that given any finite symmetric subset S C G(C),
with 1 € S, generating a Zariski dense subgroup of G, the bounded power S¢ contains
two elements a,b which alone already generate a Zariski-dense subgroup.

Proof This is Proposition 1.8. from [13]. The proof is fairly classical, and relies on
Jordan’s theorem and the Eskin-Mozes-Oh escape from subvarieties lemma (see, e.g.,
[19, Lemma 3.11]). O

Lemma 2.6 (Generating is an algebraic condition) Let G < GLy be a semi-
simple algebraic group defined over Q. There is a proper closed algebraic subvariety
X < G x G defined over Q, whose points are precisely the pairs of elements in G
which are contained in a proper algebraic subgroup of G.

Proof This is well-known (see, e.g., [35, Theorem 11.6]). We work over an algebraic
closure of Q and show that X is a closed algebraic subset. Since X is invariant under
Galois automorphisms, it will automatically be defined over Q. We claim that there
are finitely many absolutely irreducible finite dimensional non trivial modules of G,
say pi1,...,pr such that a subgroup I' < G is not Zariski-dense if and only if p;(T")
fixes a line in the representation space V; of p; for some i = 1,..., k. And this happens
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