

# Multiparameter Flow Cytometry in the Diagnosis of Hematologic Malignancies



## Multiparameter Flow Cytometry in the Diagnosis of Hematologic Malignancies

Edited by

**Anna Porwit** 

Lund University, Sweden

Marie-Christine Béné

University of Nantes, France





> CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107503830
DOI: 10.1017/9781316218549

© Cambridge University Press 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Porwit, Anna, editor. | Bene, Marie-Christine, editor.

Title: Multiparameter flow cytometry in the diagnosis of hematologic malignancies / edited by Anna Porwit, Marie Christine Bene.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2018. | Includes bibliographical references and index.

Identifiers: LCCN 2017042275 | ISBN 9781107503830 (paperback)

Subjects: | MESH: Hematologic Neoplasms—diagnosis | Flow Cytometry—methods Classification: LCC RC280.H47 | NLM WH 525 | DDC 616.99/418—dc23 LC record available at https://lccn.loc.gov/2017042275

ISBN 978-1-107-50383-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information that is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.



#### **Contents**

List of Contributors vii Preface ix List of Abbreviations xi

- Flow Cytometry in Clinical Haematopathology:
  Basic Principles and Data Analysis of
  Multiparameter Data Sets 1
  Francis Lacombe and Marie-Christine Béné
- 2 **Antigens** 14 Marie-Christine Béné and Anna Porwit
- Flow Cytometry of Normal Blood, Bone Marrow and Lymphatic Tissue 36 Anna Porwit and Marie-Christine Béné
- 4 Reactive Conditions and Other Diseases Where Flow Cytometric Findings May Mimic Haematological Malignancies 61 Wolfgang Kern, Marie-Christine Béné and Anna Porwit
- Examples of Immunophenotypic Features in Various Categories of Acute Leukaemia 75
   Marie-Christine Béné and Anna Porwit
- Acute Lymphoid Leukaemias (All) and Minimal Residual Disease in All 89
   Giuseppe Basso, Barbara Buldini and Andrea Zangrando
- Immunophenotyping of Mature B-Cell
   Lymphomas 105
   Olof Axler and Anna Porwit
- Plasma Cell Myeloma and Related
   Disorders 128
   Ruth M. de Tute, Andrew C. Rawstron and Roger G. Owen

- Mature T-Cell Neoplasms and Natural Killer-Cell Malignancies 140
   Anne Tierens
- Flow Cytometric Diagnosis of Hodgkin's Lymphoma in Lymph Nodes 161
   Lori Soma, Brent L. Wood and Jonathan R. Fromm
- Minimal Residual Disease in Acute Myeloid Leukaemia 171 Gerrit J. Schuurhuis, Angèle Kelder, Gert J. Ossenkoppele, Jacqueline Cloos and Wendelien Zeijlemaker
- 12 Ambiguous Lineage and Mixed Phenotype
   Acute Leukaemia 191
   Anna Porwit and Marie-Christine Béné
- Flow Cytometry in Myelodysplastic
   Syndromes 199
   Theresia M. Westers and Arjan A. van de Loosdrecht
- Future Applications of Flow Cytometry and Related Techniques 215
   Marie-Christine Béné and Francis Lacombe

Index 231

V



### **Contributors**

Olof Axler

Lund University, Sweden

**Giuseppe Basso** 

University of Padova, Italy

Barbara Buldini

University of Padova, Italy

**Jacqueline Cloos** 

VU University Medical Center, Amsterdam, The Netherlands

Ruth M. de Tute

Leeds University, UK

Jonathan R. Fromm

University of Washington, Seattle, Washington, USA

Angèle Kelder

VU University Medical Center, Amsterdam, The Netherlands

**Wolfgang Kern** 

MLL Munich Leukemia Laboratory,

Munich, Germany

**Francis Lacombe** 

Bordeaux University, France

Arjan A. van de Loosdrecht

VU University Medical Center, Amsterdam, The Netherlands Gert J. Ossenkoppele

VU University Medical Center, Amsterdam, The Netherlands

Roger G. Owen

Leeds University, UK

Andrew C. Rawstron

Leeds University, UK

Gerrit J. Schuurhuis

VU University Medical Center, Amsterdam, The Netherlands

Lori Soma

University of Washington, Seattle, Washington, USA

**Anne Tierens** 

University of Toronto, Canada

Theresia M. Westers

VU University Medical Center, Amsterdam, The Netherlands

**Brent L. Wood** 

University of Washington, Seattle, Washington, USA

Andrea Zangrando

University of Padova, Italy

Wendelien Zeijlemaker

VU University Medical Center, Amsterdam, The Netherlands

vii



**Preface** 

Together with cytological examination, flow cytometry is often the first exploration step in patients with clinical symptoms suggesting haematological malignancy or with fortuitously discovered anomalies in a whole blood cell count. Depending on the healthcare organisation, flow cytometry results will stand alone and be discussed later during a diagnostic conference, or be integrated in a comprehensive set of investigations including bone marrow biopsy morphology, cytogenetics and sophisticated molecular studies.

Over the years, knowledge and skills have developed so that in many cases the subtleties of the sets of markers, as well as their expression of absence, have become familiar to clinicians expecting a diagnosis. Yet, the thousands of references in the literature, dealing with this specific part of laboratory haematology, provide a good idea of the puzzlement that may overwhelm any novice in the field.

Thinking about the outlines of this book, we placed ourselves in the position of a young laboratory haematologist or haematopathologist and wondered which questions would need an answer likely to be found in a single document. We then asked Expert Friends to work with us with this aim in mind. Moreover, we wanted to focus on the new 8- and 10-colour methodologies.

We decided to start with basic characteristics of the structure and functions of flow cytometers, trying to provide a clear explanation of what sometimes seems to be very complex. We also depicted the analysis tools available in current software to make the most of acquired data (Chapter 1).

We then collected pertinent information about the structure, function and expression of a large number of the antigens investigated in flow cytometry, all mentioned somewhere in this book, together with a brief history of the way they were characterised or discovered (Chapter 2).

Before tackling pathological issues, we thought that readers would appreciate some information about what to expect when flow cytometry is applied to normal samples of blood, bone marrow or lymphatic tissue (Chapter 3). We also listed a series of non-malignant conditions where the hypothesis of malignancy is plausible and must be ruled out (Chapter 4).

In Chapter 5, we present a collection of typical flow cytometry graphs characteristic for various categories of acute leukaemia.

From Chapters 6 to 13, the authors considered specific sets of diseases and their idiosyncratic flow cytometry features.

Finally, Chapter 14 provides a glimpse at what lays ahead, in the already foreseeable developments of the versatile and powerful technology of cell analysis.

We built this book, not only as a manual that may be read through while starting to work with flow cytometry diagnostics, but also as a reference document to consult when interested in any aspect of flow cytometry diagnostics of haematological malignancies.

We hope that, together with our co-authors, we have reached that goal.

Anna Porwit and Marie-Christine Béné



### **Abbreviations**

| 7-AAD      | 7-aminoactinomycin D                  | ECD      | Energy coupled dye                   |
|------------|---------------------------------------|----------|--------------------------------------|
| AIHA       | Auto immune haemolytic anaemia        |          | (phycoerythrine-Texas red            |
| AITL       | Angio-immunoblastic T-cell            |          | conjugate)                           |
|            | lymphoma                              | EDTA     | Ethylene diamine tetraacetic acid    |
| ALL        | Acute lymphoblastic leukaemia         | ETP-ALL  | Early T-cell precursor acute         |
| AML        | Acute myeloid (or myeloblastic)       |          | lymphoblastic leukaemia              |
|            | leukaemia                             | FCM      | Flow cytometry                       |
| APC        | Allophycocyanin                       | FITC     | Fluorescein isothiocyanate           |
| APL        | Acute promyelocytic leukemia          | FNA      | Fine-needle aspirate                 |
| ATLL       | Adult T-cell leukemia/lymphoma        | FL       | Follicular lymphoma                  |
| BCP ALL    | B-cell progenitor acute               | FLAER    | Fluorescein-labelled proaerolysin    |
|            | lymphoblastic leukaemia               | FLT3-ITD | FMS-like tyrosine kinase-3 inversion |
| BCR        | B-cell receptor                       |          | tandem duplication mutation          |
| BCR-ABL    | Breakpoint cluster region-abelson     | FSC      | Forward scatter                      |
|            | [t(9;22) also called Philadelphia     | HCL      | Hairy cell leukaemia                 |
|            | chromosome]                           | GFP      | Green fluorescent protein            |
| BDCA       | Blood-derived dendritic cell antigens | GvL      | Graft versus leukaemia               |
| BF         | Body fluid                            | HIV      | Human immunodeficiency virus         |
| BM         | Bone marrow                           | HL       | Hodgkin lymphoma                     |
| BPDCN      | Blastic plasmacytoid dendritic cell   | HLA-DR   | Human leukocyte antigen – antigen    |
|            | neoplasm                              |          | D related                            |
| BR         | Blast region                          | HSL      | Hepatosplenic lymphoma               |
| CALLA      | Common acute lymphoblastic            | HSCT     | Haematopoeitic stem cell             |
|            | leukemia antigen                      |          | transplantation                      |
| CAR T-cell | Chimeric antigen receptor T-cell      | HTLV-1   | Human T-cell lymphotropic virus-1    |
| CBF        | Core binding factor                   | ICOS     | Inducible costimulatory              |
| CCR        | Chemokine receptor                    | Ig       | Immunoglobulin                       |
| CD         | Cluster of differentiation            | IL       | Interleukin                          |
| ChIP       | Chromatin immunoprecipitation         | JAK      | Janus kinase                         |
| CLL        | Chronic lymphocytic leukemia          | KIR      | Killer immunoglobulin-like           |
| CLPD       | Chronic lymphoproliferative           |          | receptors                            |
|            | disorders                             | KrO      | Krome orange                         |
| CML        | Chronic myeloid leukaemia             | LAIP     | Leukemia associated                  |
| CMML       | Chronic myelomonocytic leukaemia      |          | immunophenotype                      |
| CRLF2      | Cytokine receptor-like factor         | LCA      | Leucocyte common antigen             |
| Су         | Cyanin                                | LGL      | Large granular lymphocyte            |
| DAPI       | 4',6-diamidino-2-phenylindole         | LSC      | Leukemic stem cell                   |
| DC         | Dendritic cell                        | Lin      | Lineage                              |
| DLBCL      | Diffuse large B-cell lymphoma         | LPD      | Lymphoproliferative disorder         |
| DNA        | Deoxyribonucleic acid                 | MAPK     | Mitogen activated protein kinase     |
|            | •                                     |          | *                                    |

χi



More Information

#### **Abbreviations**

| MBL       | Monoclonal B-cell lymphocytosis | PCR      | Polymerase chain reaction          |
|-----------|---------------------------------|----------|------------------------------------|
| MCL       | Mantle cell lymphoma            | PD-1     | Programmed death-1                 |
| MDS       | Myelodysplastic syndrome        | Percp    | Peridinin chlorophyll-A protein    |
| MF        | Mycosis fungoïdes               | PE R-    | Phycoerythrin                      |
| MFI       | Mean fluorescence intensity     | PI       | Propidium iodide                   |
| MHC       | Major histocompatibility        | PI3K     | Phosphoinositide 3 kinase          |
|           | complex                         | PML-RARA | Promyelocytic leukemia/            |
| MLL/KMT2A | Mixed lineage leukaemia/lysine  |          | retinoic acid receptor A [t(15;17) |
|           | methyl transferase 2A           |          | translocation]                     |
| MRD       | Minimal residual disease        | PMT      | Photomultiplier                    |
| m-TOR     | mammalian transporter of        | RNA      | Ribonucleic acid                   |
|           | rapamycin                       | RBC      | Red blood cell                     |
| MZL       | Marginal zone lymphoma          | SC       | Sézary cell                        |
| MPAL      | Mixed phenotype acute leukemia  | SLL      | Small lymphocytic lymphoma         |
| MRD       | Minimal residual disease        | SS       | Sézary syndrome                    |
| NF        | Nuclear factor-kappa B          | SSC      | Side scatter                       |
| NGS       | Next generation sequencing      | STAT     | Signal transducer and activator of |
| NK        | Natural killer                  |          | transcription                      |
| NHL       | Non-hodgkin lymphoma            | TCR      | T-cell receptor                    |
| NPM       | Nucleophosmin                   | TdT      | Terminal deoxynucleotidyl          |
| PB        | Peripheral blood                |          | transferase                        |
| Pbl       | Pacific blue                    | TK       | Tyrosine kinase                    |
| PC        | Plasma cell                     | Tregs    | Regulatory T-cells                 |
| PCA       | Principal component analysis    | WBC      | White blood cell                   |
| PCM       | Plasma cell myeloma             | WHO      | World Health Organization          |