
Errors in Computation

1

1.1 Introduction

For solving a mathematical problem by numerical method, an input is provided in the form
of some numerical data or it is generated/created as called for by the problem. The in-
put is processed through arithmetic operations together with logical operations, which are
performed in a systematic manner and the output is produced in the form of some num-
bers. Thus the whole exercise in Numerical Analysis is all about manipulation of numbers.
Whether we are working by hand or on a computing machine, there is always a constraint
in regard to physical size of the numbers, i.e., the number of digits a number can contain.
Inside a computer the size of the number is dependent on its word-length (number of bits)
which also puts a limit on the range of numbers that can be represented in a particular
computer. Further, it may be noted that all numbers are not represented exactly inside the
computer and that the input given in the decimal form is converted to binary in the com-
puter. It should also be remembered that fractions cannot be stored in their natural form;
they are converted to decimals, for example 2/5 is input as 0.4 and 1/3 as 0.333... up to a
finite number of digits acceptable by a computer.

1.2 Floating Point Representation of Number

When a number x is expressed as,

x = p×10q

where 0.1 ≤ |p| < 1.0 and q is an integer (positive (+ve) or negative (−ve)), it is called
‘floating point’ representation of number x. A floating point form consists of two parts; the
fractional part p (alongwith the sign) is known as mantissa and the other part q as exponent,
a power raised to a radix (in the case of decimal system, 10). At some places it is referred to
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2 • Elements of Numerical Analysis

as ‘normalised floating point’ and when 1≤ p < 10, the form is called ‘scientific notation’.
A few examples of floating point representation, f l(x) of number x are given as follows:

x f l(x) Mantissa(p) Exponent(q)

2.0456 0.20456×101 0.20456 1

−32.7652 −0.327652×102 −0.327652 2

0.00234 0.234×10−2 0.234 −2

0.000000034 0.34×10−7 0.34 −7

34000000 0.34×108 0.34 8

1.3 Binary Numbers
The decimal numbers (radix 10) are converted to binary form with digits 0 and 1 (radix
2) in the computer. An integer decimal number, may be converted to binary equivalent by
following procedure:

Divide repeatedly by 2 until last quotient is 1, keeping the remainder against the quotient;
read the binary digits in the direction of arrow. Thus we get,

23 = 10111; 14 = 1110.

The fractional decimal number is converted to binary form in the following manner:
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Errors in Computation • 3

Multiply by 2 until the decimal part is zero, saving digit 0 or 1 before the decimal point.
Read the digits saved in a top-down manner. Thus the converted numbers are

0.75 = 0.11; 0.4 = 0.0110011 (0011 recurring); 0.1 = 0.0001100 (1100 recurring)

When a decimal number consists of both parts, integral as well as fractional, then both
parts are converted to binary forms separately. For example, 23.75 will convert to 10111.11.
It should be clear from the above examples that the integer numbers in the decimal system
can be converted exactly in the binary system but most of the non-integers may be repre-
sented approximately due to non-terminating character of the converted numbers.

For conversion from binary to decimal, we simply multiply the binary digits by their
respective place-value and add. For example, 10111.11 can be converted to decimal form
as,

24 23 22 21 20 2−1 2−2

1 0 1 1 1 1 1 = 1×24 +0×23 +1×22 +1×21 +1×20 +1×2−1 +1×2−2

= 16+0+4+2+1+ .5+ .25

= 23.75

It may also be noted that largest k-digit binary integer will have the value 2k − 1 in
decimal. For example, the largest 2-digit binary number will be 11 = 22− 1 = 3 and a
3-digit largest binary number will be 111 = 23−1 = 7 and so on. Obviously all the k digits
will be binary 1’s. A k-digit binary number can represent 2k decimal numbers from 0 to
2k−1.

1.3.1 Binary number representation in computer

As stated earlier, all the input data is converted to binary inside the computer; while the
decimal integers are represented exactly in the computer memory, the non-integers are rep-
resented in floating point form. We would like to explain very briefly as how the floating
point numbers are stored in the computer memory. Consider the floating point representa-
tion of binary numbers given below:

Binary number Floating point form Mantissa Exponent

0.0111 0.1110×10−01 +0.1110 −01

−1.101 −0.1101×10+01 −0.1101 +01

11.1 0.1110×10+10 +0.1110 +10
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4 • Elements of Numerical Analysis

It may be noted that all numbers are in binary so that 10 is equal to 2 in decimal. The
other thing to be noted is that mantissa is expressed in four digits and exponent in two digits,
in each case.

Let us now consider a hypothetical case of a computer having a word length of 8 bits
only. Out of eight bits, the left-most bit is used for storing the sign of mantissa. Let 0
denote positive (+ve) and 1 denote negative (−ve) sign of mantissa. The next four bits are
used for storing the binary digits of mantissa. The right-most 3 bits are used for storing the
exponent part; the first bit for storing its sign and last two bits for its value, digit 0 showing
positive (+ve) and digit 1 showing negative (−ve) exponent (See Fig. 1.1).

Figure 1.1 Floating point representation in 8-bit computer memory.

According to the memory configuration of Fig. 1.1 the binary numbers given above will
be represented in the floating point form as follows:

Binary number with decimal equivalent Representation in 8-bit memory

(a) 0.0111 (0.4375) 01110101

(b) −1.101 (−1.875) 11101001

(c) 11.1 (3.5) 01110010

It may be stated that the positive exponent varies from 000 to 011, i.e., from 0 to 3 in
decimal. The negative exponent should vary from 101 to 111, i.e., from −1 to −3. But 100
may be considered as −4, since 000 is already zero, hence negative exponent varies from
−1 to −4 in decimal.

It may be noted that the largest positive number that can be stored under present con-
figuration would be, 0.1111× 1011 = 111.1 (binary) = 7.5 (decimal). The algebraically
smallest number that can be stored would be −7.5 (in decimal). Thus the range of numbers
that can be represented in the computer memory would be −7.5 ≤ x ≤ 7.5. The small-
est positive non-zero number represented in the above memory configuration would be,
0.1000× 10100 = 0.00001 (binary) = 2−5 = 0.03125 (decimal). However, it may also be
mentioned that even the simplest computer has a memory of 32-bit word and two or more
words can be adjoined to store a number in floating point. Thus the space (number of bits)
occupied by the mantissa and the exponent would be manifolds that of shown in Fig. 1.1
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Errors in Computation • 5

but the logic remains same. When a fixed number of decimal digits are kept in all numbers,
it is called ‘Fixed Point’ representation.

1.4 Significant Digits

All the digits from 0 to 9 in a number, except the zeros which are used for fixation of decimal
point, are called significant digits (or figures). For example, in the number .003456, the first
two zeros are not significant since we can also express the number as .3456×10−2, while
the other four digits, namely, 3, 4, 5 and 6 are significant. But in the number 20.003456, all
the eight digits are significant. In order to find the number of significant digits in a number,
express it in floating point; the mantissa part gives the number of significant digits.Whether
the last zeros in a number are significant or not may depend on the context. For example, in
measuring the heights of the students, in 168.00 cm, the last zero may not be significant and
we can express the height as 168.0 cm, showing that the height is being measured nearest
to the 1

10 th part of the centimeter, so that zero in 168.0 cm is significant.

1.5 Rounding and Chopping a Number

In scientific computing we are encountered by numbers with too many digits. More often
than not, we have to shorten/reduce them to a size which may not affect the end result within
a desired accuracy. There are two ways of reducing the size of or truncating the number,
viz., (i) rounding (ii) chopping. Let us first discuss the procedure for rounding off a number
x in decimal system.

Let the number x be expressed in floating point form with s digits in mantissa and with
exponent q, as

x = ·d1d2 . . .dndn+1 . . . .ds×10q.

If the number x is to be rounded to n significant digits, following procedure would be
adopted:

(i) if dn+1 < 5, then no change in any of the digits from d1 to dn and the rounded number
would be,

x' .d1d2 . . . . dn×10q.

(ii) if dn+1 > 5, then digit dn is incremented by 1, i.e.dn becomes dn+1; as a cosequence
of this other digits may get affected and even the exponent may have to be adjusted
accordingly.
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6 • Elements of Numerical Analysis

(iii) if dn+1 = 5, then there will be two ways for rounding, depending upon dn being an
even digit (0,2,4,6,8) or an odd digit (1, 3, 5, 7, 9). If dn is even, then case (i)

applies and if dn is odd then case (ii) applies. Thus probability of both cases is
1
2

when dn+1 = 5.

Given below are some examples of rounding the numbers to four places of decimal (four
significant digits):

Floating point number Rounded to four decimals

(a) 0.245684×102 0.2457×102

(b) 0.245629×10−2 0.2456×10−2

(c) 0.245659×102 0.2456×102

(d) 0.245750×102 0.2458×102

(e) 0.999951×102 0.1000×103

(f) 0.999858×102 0.9998×102

The difference between examples (e) and ( f ) may be noted. It may also be observed that
in example (e) all zeros in the rounded number are significant.

However, a more conventional way for rounding, is straight in that if dn+1 < 5, then all
the digits from d1 to dn remain unaltered [case (i)] while if dn+1 ≥ 5, then dn is incremented
by 1 and necessary changes are made in the digits d1 to dn and also in the exponent, if
necessary [case (ii)].

When all the digits after dn are ignored, irrespective of whatever value dn+1 has, the pro-
cedure for truncating the number is known as ‘chopping off’ the number or simply ‘chop-
ping’. If there are sufficient number of significant digits in a number, like in a computer,
the process of chopping may not affect the result in normal circumstances.

1.6 Errors due to Rounding/Chopping
Suppose a number x is rounded to x∗, then the modulus of the difference between x and x∗,
i.e. |x− x∗| is known as rounding error or error due to rounding in x∗.

Let x be a number which has been rounded to 4 decimals, say x∗ = 0.4387. Then lower
and upper bounds for the actual number x would be,

0.43865≤ x < 0.43875

or 0.43865−0.4387≤ x− x∗ < 0.43875−0.4387
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Errors in Computation • 7

or −0.00005≤ x− x∗ < 0.00005

or |x− x∗| ≤ 0.00005 =
1
2
×10−4

=
1
2
× unit at 4th decimal place.

The above result can be generalised for a number x represented in the floating point form
as,

x = ·d1d2 . . . .dndn+1 . . . .ds×10q.

If x is rounded to n decimals, then the maximum rounding error would be,

|x − x∗| ≤ 1
2
×10−n×10q

=
1
2
×10q−n. (1.1)

If the number x is chopped off to n decimals, then it is easy to see that the maximum
error due to chopping would be,

|x− x∗| ≤ 10q−n. (1.2)

That is, the error in chopping a number is twice that in the rounding.

1.7 Measures of Error in Approximate Numbers

Let x∗ be an approximation of exact number x, then we can measure the magnitude of error
in three different forms:

(i) absolute error (a.e.) = |x− x∗| (1.3a)

(ii) relative error (r.e.) =
∣∣∣∣x− x∗

x

∣∣∣∣ or
∣∣∣∣x− x∗

x∗

∣∣∣∣ (1.3b)

(iii) percentage error (p.e.) = r.e. ×100 (1.3c)
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8 • Elements of Numerical Analysis

1.8 Errors in Arithmetic Operations

Let x1 and x2 be two numbers which are rounded to x∗1 and x∗2 respectively and let ε1 and
ε2 be the corresponding rounding errors in them, such that x1 = x∗1 + ε1 and x2 = x∗2 + ε2.
We are going to study below, the effects of rounding errors on arithmetic operations, viz.,
addition, subtraction, multiplication and division.

(i) Addition

x1 + x2 = x∗1 + ε1 + x∗2 + ε2

= x∗1 + x∗2 + ε1 + ε2

or |(x1 + x2)− (x∗1 + x∗2)|= |(x1− x∗1)+(x2− x∗2)|= |ε1 + ε2| ≤ |ε1|+ |ε2|.

This can be generalised to n numbers as,∣∣∣∣∣ n

∑
i=1

xi−
n

∑
i=1

x∗i

∣∣∣∣∣=
∣∣∣∣∣ n

∑
i=1

(xi− x∗i )

∣∣∣∣∣=
∣∣∣∣∣ n

∑
i=1

εi

∣∣∣∣∣≤ n

∑
i=1
|εi| (1.4)

That is, the total absolute error in the sum of n numbers will be less than or equal to
the sum of the absolute errors in each of them. Although it gives the upper bound for the
absolute error in the sum, the actual error will be much smaller since some of the errors
may be positive and some negative so that cumulative effect would be much reduced.

(ii) Subtraction

x1− x2 = x∗1 + ε1− x∗2− ε2

or |(x1− x2)− (x∗1− x∗2)|= |(x1− x∗1)− (x2− x∗2)|= |ε1− ε2| ≤ |ε1|+ |ε2|. (1.5)

Thus the absolute error in subtraction of two approximate numbers can be as great as the
sum of their individual absolute errors; since the errors can be positive or negative and if ε1
and ε2 are of opposite signs, then under subtraction, they will be added up.

(iii) Multiplication

x1 · x2 = (x∗1 + ε1) · (x∗2 + ε2)

or x1 · x2− x∗1 · x∗2 = x∗1ε2 + x∗2ε1, neglecting ε1ε2

a.e. = |x1x2− x∗1 · x∗2| ≤ |x∗1ε2|+ |x∗2ε1| (1.6a)
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Errors in Computation • 9

r.e. =
∣∣∣∣x1x2− x∗1x∗2

x∗1x∗2

∣∣∣∣≤ ∣∣∣∣ε1

x∗1

∣∣∣∣+ ∣∣∣∣ε2

x∗2

∣∣∣∣. (1.6b)

Thus the maximum relative error in the product of two approximate numbers will be
less than or equal to the sum their individual relative errors. This can be generalised to n
numbers.

(iv) Division

x1

x2
=

x∗1 + ε1

x∗2 + ε2
=

x∗1

(
1+

ε1

x∗1

)
x∗2

(
1+

ε2

x∗2

) =
x∗1
x∗2

(
1+

ε1

x∗1

)(
1+

ε2

x∗2

)−1

=
x∗1
x∗2

(
1+

ε1

x∗1

)(
1− ε2

x∗2

)
, neglecting ε2

2 and higher powers

=
x∗1
x∗2

(
1+

ε1

x∗1
− ε2

x∗2

)
, neglecting ε1ε2 term.

a.e. =
∣∣∣∣x1

x2
− x∗1

x∗2

∣∣∣∣≤ ∣∣∣∣ε1

x∗2

∣∣∣∣+
∣∣∣∣∣ε2x∗1

x∗2
2

∣∣∣∣∣. (1.7a)

r.e. =
∣∣∣∣(x1

x2
− x∗1

x∗2

)
÷ x∗1

x∗2

∣∣∣∣≤ ∣∣∣∣ε1

x∗1

∣∣∣∣+ ∣∣∣∣ε2

x∗2

∣∣∣∣. (1.7b)

Like multiplication, the relative error in the division of a number by another number
cannot exceed the sum of their individual relative errors.

1.9 Computation of Errors Using Differentials

Let z be a function of two variables x and y defined as z = f (x, y). If increments δx and δy
are given to x and y respectively, then the corresponding increment δ z in z is given by,

δ z = f (x+δx, y+δy)− f (x, y).

Expanding the first term by Taylor’s series (see Appendix A),

δ z=
[

f (x, y)+
∂ f
∂x

δx +
∂ f
∂y

δy +
1
2

(
∂ 2 f
∂x2 δx2 +2

∂ 2 f
∂x∂y

δx ·δy +
∂ 2 f
∂y2 δy2

)
+ · · ·

]
−

f (x, y).
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10 • Elements of Numerical Analysis

Neglecting higher powers of δx and δy and their products, assuming they are small,
above may be written as,

δ z' ∂ f
∂x

δx+
∂ f
∂y

δy. (1.8)

The error in arithmetic operations can be explained with the help of formula (1.8) con-
sidering δx and δy as errors in x and y respectively:

(i) & (ii) Addition/Subtraction

z = f (x, y) = x± y;
∂ f
∂x

= 1,
∂ f
∂y

=±1.

a.e. = |δ z| ≤ |δx|+ |δy|

(iii) Multiplication

z = f (x, y) = xy;
∂ f
∂x

= y,
∂ f
∂y

= x.

a.e. = |δ z| ≤ |yδx|+ |xδy| and r.e. =
∣∣∣∣δ z

z

∣∣∣∣≤ ∣∣∣∣δx
x

∣∣∣∣+ ∣∣∣∣δy
y

∣∣∣∣.
(iv) Division

z = f (x, y) =
x
y

;
∂ f
∂ z

=
1
y
,

∂ f
∂y

=− x
y2 .

δ z =
δx
y
− xδy

y2 or
δ z
z

=
δx
x
− δy

y

r.e. =
∣∣∣∣δ z

z

∣∣∣∣≤ ∣∣∣∣δx
x

∣∣∣∣+ ∣∣∣∣δy
y

∣∣∣∣.
Note: The analysis can be extended for n variables x1, x2, . . . xn.

If z = f (x1, x2, . . . xn) then

δ z =
∂ f
∂x1
·δx1 +

∂ f
∂x2
·δx2 + . . .+

∂ f
∂xn
·δxn.
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