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MEASUREMENTS AND UNCERTAINTIES

1

This chapter covers the following topics:

 Fundamental and derived units

 Significant figures and scientific notation

 Order-of-magnitude estimates

 Random and systematic errors

 Uncertainties, gradients and intercepts

 Linearisation of graphs

 Vectors and scalars

1.1 Units
It is a fascinating fact that all physical quantities have units that can be expressed in terms of those for just 

seven fundamental quantities.

DEFINITIONS

FUNDAMENTAL UNITS The seven fundamental quantities in the S.I. system (the IB syllabus uses only the first six) and 

their units are:

• Time second (s)

• Length meter (m)

• Mass kilogram (kg)

• Temperature kelvin (K)

• Quantity of matter mole (mol)

• Electric current ampere (A)

• Luminous intensity candela (cd)

DERIVED UNITS All other quantities have derived units, that is, combinations of the fundamental units. For example, 

the derived unit for force (the newton, N) is obtained using F = ma to be kg m s–2

 
and that for electric 

potential difference (the volt, V) is obtained using W = qV to be 
J

C

Nm

A s

kgms m

A s
kgm s A

2
2 3 1= = =

−
− − . 

SIGNIFICANT FIGURES There is a difference between stating that the measured mass of a body is 283.64 g and 

saying it is 283.6 g. The implication is that the uncertainty in the first measurement is ±0.01 g and that in the 

second is ±0.1 g. That is, the first measurement is more precise – it has more significant figures (s.f.). When we do 

operations with numbers (multiplication, division, powers and roots) we must express the result to the same number 

of s.f. as in the least precisely known number in the operation (Table 1.1).

Table 1.1

Number Number of s.f. Scientific notation

34 2 3.4 × 101

3.4 2 3.4 × 100 or just 3.4

0.0340 Zeros in front do not count but zeros at the end in a 
decimal do count.

3 3.4 × 10−2

340 Zeros at the end in an integer do not count. 2 3.4 × 102
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1
Thus the kinetic energy of a mass of 2.4 kg (2 s.f.) moving at 14.6 m s−1 (3 s.f.) is given as 

= × × = ≈ = ×
1

2
2.4 14.6 255.792 J 260 2.6 10 J2 2EK  (2 s.f.). Similarly, the acceleration of a body of 

mass 1200 kg (2 s.f.) acted upon by a net force of 5250 N (3 s.f.) is given as   
5250

 ____

 1200   = 4.375 ≈ 4.4 m s−2 (2 s.f.).

TEST YOURSELF 1.1

✓    The force of resistance from a fl uid on a sphere of radius r is given by F rv6πη= , where v is the speed 

of the sphere and η is a constant. What are the units of η ?

TEST YOURSELF 1.2

✓   The radius R of the fi reball t seconds after the explosion of a nuclear weapon depends only on the 

energy E released in the explosion, the density ρ of air and the time t. Show that the quantity 
Et 2

ρ
 has 

units of m5 and hence that R
Et 2

1

5

ρ
≈







. Calculate the energy released if the radius of the fi reball is 140 m 

after 0.025 s. (Take 1.0kgm 3ρ = − .)

1.2 Uncertainties

DEFINITIONS

RANDOM UNCERTAINTIES Uncertainties due to the inexperience of the experimenter and the diffi culty of 

reading instruments. Taking an average of many measurements leads to a more accurate result. The average of 

n measurements x1, x2, …, xn is  
_
 x  =   

x1 + x2 + … + xn  ______________ n   .

SYSTEMATIC UNCERTAINTIES Uncertainties due mainly to incorrectly calibrated instruments. They cannot be reduced 

by repeated measurements.

ACCURATE MEASUREMENTS Measurements that have a small systematic error.

PRECISE MEASUREMENTS Measurements that have a small random error.

Nature of Science. A key part of the scientii c method is recognising the errors that are present in the 

experimental technique being used, and working to reduce these as much as possible. In this section you 

have learned how to calculate errors in quantities that are combined in dif erent ways and how to estimate 

errors from graphs. You have also learned how to recognise systematic and random errors.

No matter how much care is taken, scientists know that their results are uncertain. However, they need to 

distinguish between inaccuracy and uncertainty, and to know how coni dent they can be about the validity 

of their results. The search to gain more accurate results pushes scientists to try new ideas and rei ne their 

techniques. There is always the possibility that a new result may coni rm a hypothesis for the present, or it 

may overturn current theory and open a new area of research. Being aware of doubt and uncertainty are key 

to driving science forward.

Normally we express uncertainties to just one signii cant i gure. However, if a more sophisticated statistical 

analysis of the data has taken place there is some justii cation for keeping two signii cant i gures.

In general, for a quantity Q we have

Q = Q0 ± ΔQ
 measured value    absolute uncertainty 

,   
ΔQ

 ___

 Q0

   = fractional uncertainty,   
ΔQ

 ___

 Q0

   × 100% = percentage uncertainty
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As an example, consider a measurement of the length of the side of a cube, given as 25 ± 1 mm.  The 25 mm 

represents the measured value of the length and the ±1 mm represents the absolute uncertainty in the

measured value. The ratio   
1
 ___
 25   = 0.04 is the fractional uncertainty in the length, and   

1
 ___
 25   × 100% = 4% is the 

percentage uncertainty in the length.

Suppose quantities a, b and c have been measured with absolute uncertainties, respectively, of Δa, Δb and Δc. If 

we use a, b and c to calculate another quantity Q, these uncertainties will result in an uncertainty in Q.  The 

(approximate) rules for calculating the uncertainty ΔQ in Q are:

• If Q = a ± b ± c, then ΔQ = Δa + Δb + Δc. That is, for addition and subtraction, add the absolute 

uncertainties.

• If =Q
ab

c
, then 

∆
=

∆
+

∆
+

∆Q

Q

a

a

b

b

c

c
. That is, for multiplication and/or division add the

 fractional uncertainties.

• If =Q
a

b

n

m
, then 

∆
=

∆
+

∆Q

Q
n

a

a
m

b

b
. In particular, if =Q ab  or =Q

a

b
, then 

∆
=

∆
+

∆1

2

1

2

Q

Q

a

a

b

b
.

✓ Model Answer 1.1
The volume of a cylinder of base radius R and height H is given by V =  R

2
H.  The volume of a 

cylinder is measured to 10% and height to 4%. Estimate the percentage uncertainty in the radius.

First solve for the variable whose uncertainty we want to estimate: R
V

Hπ
= .

Hence 
1

2

1

2
(10 4) 7%

R

R

V

V

H

H

∆
=

∆
+

∆





= × + = .

TEST YOURSELF 1.3

✓   The resistance of a lamp is given by R
V

I
= . The uncertainty in the voltage is 4% and the uncertainty in

 the current is 6%. What is the absolute uncertainty in a calculated resistance value of 24 Ω?

TEST YOURSELF 1.4

✓    Each side of a cube is measured with a fractional uncertainty of 0.02. Estimate the percentage 

uncertainty in the volume of the cube.

TEST YOURSELF 1.5

✓   The period of oscillation of a mass m at the end of a spring of spring constant k is 

 given by T
m

k
2π= .

  What is the percentage uncertainty in the period if m is measured with a percentage 

uncertainty of 4% and the k with a percentage uncertainty of 6%?

Avoid the common mistake of 

saying that the uncertainty is 

(4% 6%) 3%+ ≈ .
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1
Error bars
Suppose that we want to plot the point (3.0 ± 0.1, 5.0 ± 0.2) on a set 

of x and y axes. First we plot the point with coordinates (3.0, 5.0) and 

then show the uncertainties as error bars (Figure 1.1).  The horizontal 

error bar will have length 2 × 0.1 = 0.2 and the vertical will have 

length 2 × 0.2 = 0.4.

DEFINITIONS

BEST-FIT LINE The curve or straight line that goes through all the error 

bars; an example is shown in Figure 1.2. Note that a ‘line’ may be  

straight or curved.

Finding slopes
To ind the slope (or gradient) of a curve at a  

particular point (here at x = 1.0 × 10−2 m), 

draw the tangent to the curve at that point 

(Figure 1.3).

Choose two points on the tangent 

that are as far apart as possible. Note 

in this case that the units on the 

horizontal axis are 10−2 m, and that 

the slope has a negative value.

=
−

− ×

= − ×

−

−

Slope
6.0 1.2

0.0 2.0 10

volt

m

2.4 10 Vm

2

2 1

Estimating areas under curves
To estimate the area under the black curve in Figure 1.4, draw a straight line (red) 

from the point (0, 6) to the point (4, 1.5).

It is easy to calculate the area of the trapezium under the straight line, as 

+
× =

(6 1.5)

2
4 15.0.

Now estimate the number of small squares in the space between the straight line 

and the curve, and subtract this from the total, to give the area under the curve.  

There are about 53 squares.

Each one has area of 0.25 × 0.25 = 0.0625 square units, so the area between the 

curve and the straight line is about 53 0.0625 = 3.3.

So the area under the curve is about 15.0 − 3.3 = 11.7 square units.

5.2

5.0

y

x
0

4.8

2.9 3.0 3.1

0.4

0.2

Figure 1.1
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Getting straight-line graphs
If we know the relationship between two variables we can usually arrange to plot the data in such a way that 

we get a straight line. Bear in mind that the standard equation of a straight line is

= +
gradient vertical intercep

y m x c
t

where we plot the variable y on the vertical axis and the variable x on the horizontal axis.

If the straight line goes through the origin (c = 0), we say that y is proportional to x.

If the best-it line is not straight or if it does not go through the origin, then either of these reasons is 

suicient to claim that y is not proportional to x.

As an example, consider the relationship π= 2T
m

k
 for the period  T of a mass m undergoing oscillations 

at the end of a spring of spring constant k. Compare this equation and the general straight-line equation:

π

π

= ×

↓ ↓

= ×

2

2

constants

T
k

m

y
k

x

By identifying ↔T y and ↔m x we get the equation of a straight line, 
π

=
2

y
k

x . So if we plot T on the

vertical axis and m  on the horizontal axis we should get a straight line whose gradient is 
π2

k
. Alternatively, 

we may write:

π

π

= ×

↓ ↓

= ×

4

4

2
2

2

constants

T
k

m

y
k

x

By identifying ↔
2T y and ↔m x  we get the equation of a straight line, 

π
=

4 2

y
k

x . So if we plot T  2 on 

the vertical axis and m on the horizontal axis we should get a straight line whose gradient is 
π4 2

k
.

A diferent procedure must be followed if the variables are related through a power relation such as F = kr n, 

where the constants k and n are unknown. Taking natural logs (or logs to any other base), we have:

= + ×

↓ ↓

= + ×

ln ln ln

ln

F k n r

y k n x

and so plotting ln F versus ln r should give a straight line with gradient n and vertical intercept ln k.

A variation of this is used for an exponential equation such as e0A A t= λ− , where A0 and λ are constants. 

Here we can take the logs of both sides to get λ= −ln ln 0A A t , and so:

λ

λ

= − ×

↓ ↓

= − ×

ln ln

ln

0

0

A A t

y A x
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1
Plotting ln A on the vertical axis and t on the horizontal then gives a straight line with gradient –λ and 

vertical intercept ln A0.

TEST YOURSELF 1.6

✓   Copy Table 1.2 and fill in the blank entries.

Table 1.2

Equation Constants Variables to be 
plotted to give 
straight line

Gradient Vertical intercept

P = kT k

v = u + at u, a

v2 = 2as a

F
kq q

r
1 2
2

=
k, q1, q2

a x2
ω= − 2

ω

V
kq

r
= k, q

T
GM

R
42

2
3π

= G, M

= −I I aTe0
I0, a

h

mqV2
λ = h, m, q

F av bv 2
= + a, b

E m A x
1

2
2 2 2

ω= − m A, ,2
ω

u v f

1 1 1
+ = f

TEST YOURSELF 1.7

✓    State what variables must be plotted so that we get a straight line for the relation d = ch0.8, where c is a 

constant.

Estimating uncertainties in measured quantities
Useful simple rules are for estimating the uncertainty in a measured quantity is:

For analogue meters, use half of the smallest scale division. For example, for an ordinary meter rule the smallest 

scale division is 1 mm and so the uncertainty is ±0.5 mm. If this is used, for example, to measure the length 

of a rod, this uncertainty applies to the position of each end of the rod, for a total uncertainty of ±1 mm in 

the rod’s length.

For digital meters, use the smallest division. For example, with a digital voltmeter that can read to the nearest 

hundredth of a volt, take the uncertainty as ±0.01 V. For an ammeter that can read to the nearest tenth of an 

ampere, take the uncertainty as ±0.1 A.
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TEST YOURSELF 1.8

✓    Estimate the reading and the uncertainty in each of the 

instruments in Figure 1.5.

Uncertainty in the measured value of a gradient (slope)
To i nd the uncertainty in the gradient of the (straight) best-i t line, draw lines of maximum and minimum 

gradient. You must judge these by eye, taking into account all error bars, not just those of the i rst and last data 

points. Calculate these two gradients, mmax and mmin. A simple estimate of the uncertainty in the gradient is then
−

2
max minm m

.

TEST YOURSELF 1.9

✓    Electrons that have been accelerated through a potential difference V enter a region of magnetic fi eld B,

where they are bent into a circular path of radius r. Theory suggests that r
m

qB
V

22

2
= , where q is the 

electron’s charge and m is its mass. Table 1.3 shows values of the potential difference V and radius r 

obtained in an experiment.

80

70

60

50

cm3

a b

Figure 1.5

✓  Annotated Exemplar Answer 1.1
The period of a pendulum is measured to be T = (2.20 ± 0.05) s. 

Calculate the value of T  2, including its uncertainty. [3]

T  2 = 2.202 = 4.84 s2

ΔT  2 = 0.052 = 0.0025 s2

So T  2 = (4.84 ± 0.0025) s2.

The value of T  2 is correct, and with the correct units.

The value of ΔT is 0.05 s, but you cannot square the uncertainty 
in T to fi nd ΔT  2, the uncertainty in T  2. Make sure you know 
how to fi nd fractional uncertainties when there are powers, and 
remember the protocol for the number of signifi cant fi gures in the 
uncertainty.

Here the fractional uncertainty in T is   ΔT ____ T   =   0.05 _____ 2.20   = 0.022 ≈ 0.02 

(rounded to 1 s.f. as the uncertainty is greater than 2%). The power 
in T  2 is 2, so multiply the fractional uncertainty in T by 2 to 
fi nd the fractional uncertainty in T  2, that is, 0.02 × 2 = 0.04. So 
ΔT  2 = 0.04 × 4.84 ≈ 0.2 s 2.

The fi nal answer gains no 
marks because the wrong 
method was used to fi nd ΔT. 
One way to spot errors like this 
is to ask if the fi nal answer is 
sensible. Here the uncertainty 
is given to 2 s.f. in the third 
and fourth decimal places, 
when the value has two decimal 
places, so the answer must be 
wrong. The correct answer is 
T  2 = (4.8 ± 0.2) s2.

1/3
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1
Table 1.3

Radius r / cm ±0.1 cm Potential difference V / V r 
2 / cm2

4.5 500 ±

4.9 600 ±

5.3 700 ±

5.7 800 ±

6.0 900 ±

a Explain why a graph of r 2 against V 

will result in a straight line.

b State the slope of the straight line in 

a in terms of the symbols m, q, B.

c Copy Table 1.3 and in the right-hand 

column insert values of the radius 

squared, including its uncertainty.

Figure 1.6 shows the data points plotted 

on a set of axes.

d Draw error bars for the all the data 

points.

e Draw a best-fit line for these data 

points.

f Calculate the gradient of the best-fit  

line, including its uncertainty.

The magnetic field used in this experiment was B = 1.80 × 10−3   T.

g Calculate the value that this experiment gives for the charge-to-mass ratio 
q

m





  of the electron. 

Include the uncertainty in the calculated value.

1.3 Vectors and scalar quantities

DEFINITIONS

VECTOR A physical quantity that has both magnitude and direction. It is represented by arrows. The length of the 

arrow gives the magnitude of the vector. The direction of the arrow is the direction of the vector. Examples of vectors 

are displacement, velocity, acceleration, force, momentum and electric/gravitational/magnetic fields.

SCALARS A physical quantity with magnitude but not direction. A scalar can be positive or negative. Examples are 

distance, speed, mass, time, work/energy, electric/gravitational potential and temperature.

20

r 2 / cm2

V / V

35

30

25

40

400 600 800 1000

Figure 1.6

www.cambridge.org/9781107495753
www.cambridge.org


Cambridge University Press
978-1-107-49575-3 — Physics for the IB Diploma Exam Preparation Guide
K. A. Tsokos 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.3 Vectors and scalar quantities

9

Adding vectors: have a and b start at the same point, 

O (Figure 1.7a). Draw the parallelogram whose two 

sides are a and b. Draw the diagonal starting at O.

Subtracting vectors: have a and b start at the same 

point, O (Figure 1.7b). To ind b − a draw the vector 

from the tip of a to the tip of b.

Components of vectors

                              Figure 1.8 Components of vectors.

The component adjacent to the angle θ involves cos θ and that opposite to θ involves sin θ.

• Draw the forces.

• Put axes.

• Get components.

• Choose as one of your axis the direction in which the body moves or would move if it could.

TEST YOURSELF 1.10

✓    A river is 16 m wide. A boat can travel at 4.0 m s−1 with respect to the water and the current has a  

speed of 3.0 m s−1 with respect to the shore, directed to the right (Figure 1.9). The boat is rowed in  

such a way as to arrive at the opposite shore directly across from where it started. Calculate the time 

taken for the trip.

b + a ab –

bb

aa

a b

O O

Figure 1.7 a Addition; b subtraction.

F sin 

F cos 

F

T sin 

T cos 
T 

mg sin mg cos 

R

mg 

a b c

Figure 1.9

current

required path

of boat

16 m
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1
1.4 Order-of-magnitude estimates
Tables 1.4, 1.5 and 1.6 give typical values for various distances, masses and times. You are not expected to 

know these by heart but you must have a general idea of such sizes, masses and durations.

Table 1.4 Table 1.5

Length / m Mass / kg

Radius of observable universe 1026 The universe 1053 

Distance to the Andromeda galaxy 1022 The Milky Way galaxy 1041 

Diameter of the Milky Way galaxy 1021 The Sun 1030 

Distance to Proxima Centauri (star) 1016 The Earth 1024

Diameter of solar system 1013 Boeing 747 (empty) 105

Distance to the Sun 1011 An apple 0.2

Radius of the Earth 107 A raindrop 10−6

Size of a cell 10−5 A bacterium 10−15 

Size of a hydrogen atom 10−10 Mass of smallest virus 10−21

Size of an average nucleus 10−15 A hydrogen atom 10−27 

Planck length 10−35 An electron 10−30 

Table 1.6

Time / s

Age of the universe 1017 

Time of travel for light from nearby star (Proxima Centauri) 108 

One year 107 

One day 105 

Period of a heartbeat 1

Period of red light 10−15 

Time of passage of light across an average nucleus 10−23

Planck time 10−43 

TEST YOURSELF 1.11

✓   Estimate the weight of an apple.

TEST YOURSELF 1.12

✓   Estimate the number of seconds in a year.

TEST YOURSELF 1.13

✓   Estimate the time taken by light to travel across a nucleus.
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