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Special Values of the
Riemann Zeta Function:

Some Results and Conjectures
A. Raghuram

Abstract

These notes are based on two lectures given at the instructional work-

shop on the Bloch–Kato conjecture for the values of the Riemann ζ-

function at odd positive integers. The workshop was held at IISER,

Pune, in July 2012. The aim of these notes is to give a brief introduc-

tion to (i) Borel’s results and Lichtenbaum’s conjectures on the special

values of the Riemann ζ-function, and (ii) Deligne’s conjecture and the

Tamagawa number conjecture of Bloch and Kato on the special values

of motivic L-functions as applied to Tate motives.

1.1 Values of the Riemann ζ-function and K-groups
of Z

1.1.1 Definition and basic analytic properties of ζ(s)

Definition of ζ(s)

The Riemann zeta function is defined by the series

ζ(s) =
∞∑
n=1

1

ns
, σ > 1,

where s = σ + it is a complex variable with σ = <(s) and t = =(s).

The series converges absolutely for σ > 1, which may be seen using the

integral test by comparing the series with
∫∞

1
1/xσ dx.
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2 A. Raghuram

Euler product, analytic continuation and functional equation

Theorem 1.1.1 (Basic Analytic Properties) The Riemann zeta func-

tion has the following properties:

1. (Euler Product) For σ > 1 we have

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the product runs over all primes p.

2. (Analytic continuation) The function ζ(s), which is defined for σ > 1,

extends to a meromorphic function to all of C with only one pole which

is located at s = 1 and is a simple pole with residue 1. Around s = 1,

we have

ζ(s) =
1

s− 1
+ γ +

∞∑
k=1

γk(s− 1)k

where γ is Euler’s constant.

3. (Functional equation)

π−s/2 Γ
(s

2

)
ζ(s) = π(1−s)/2 Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) is the usual Γ-function.

See, for example, Ivic [Iv85, Chapter 1].

Let ζ∞(s) = π−s/2 Γ
(
s
2

)
, and define the completed zeta function by

Λ(s) := ζ∞(s)ζ(s) = π−s/2 Γ
(s

2

)
ζ(s). (1.1)

Then Λ(s) has a meromorphic continuation to all of C with simple poles

at s = 0, 1 and is holomorphic elsewhere. The functional equation looks

like Λ(s) = Λ(1− s). In analytic number theory, one also completes ζ(s)

as Λ∗(s) = s(1 − s)Λ(s). We still have the same functional equation

Λ∗(s) = Λ∗(1− s), but Λ∗(s) has the virtue of being an entire function.

However, from the motivic or automorphic perspective, the completed

zeta function is always taken to be Λ(s) and not Λ∗(s).

An easy consequence of the functional equation is:

ζ(0) = − 1

2
. (1.2)

(For the interested reader, here is a quote from Ramanujan’s Notebooks:

The constant of a series has some mysterious connection with the given

infinite series and it is like the centre of gravity of a body. Mysterious
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ζ-values 3

because we can substitute it for the divergent infinite series. Now the

constant of the series 1 + 1 + 1 + &c is − 1
2 . See p.79 of ‘Notebooks of

Srinivasa Ramanujan’, Volume 1, Published by TIFR, Mumbai 2012.)

1.1.2 Euler’s Theorem

Critical points

Definition 1.1.2 An integer n is said to be critical for ζ(s) if both

ζ∞(s) and ζ∞(1− s) are regular (i.e., no poles) at s = n. The set of all

critical integers is called the critical set.

Observe that, by definition, the critical set is symmetric, i.e., invariant

under s 7→ 1− s.

Proposition 1.1.3 The critical set for ζ(s) consists of all even positive

integers and all odd negative integers, i.e., critical set for

ζ(s) = {. . . , 1− 2m, . . . ,−5,−3,−1} ∪ {2, 4, 6, . . . , 2m, . . . } .

Proof Let n be critical for ζ(s). This means two conditions on n:

1. ζ∞(s) = π−s/2Γ(s/2) does not have a pole at s = n; exponentials

are entire and non-vanishing and so this means Γ(s/2) has no pole

at n, i.e., n/2 /∈ {. . . ,−3,−2,−1, 0}, which means that n is not a

non-positive even integer; and

2. ζ∞(1 − s) = π−(1−s)/2Γ((1 − s)/2) does not have a pole at s = n;

this translates to Γ((1 − s)/2) having no pole at n, i.e., (1 − n)/2 /∈
{. . . ,−3,−2,−1, 0}, or n /∈ {1, 3, 5, . . . }, which means that n is not

an odd positive integer.

The critical values of ζ(s)

The Bernoulli numbers are defined by the formal power series expansion

of z/(ez − 1):

z

ez − 1
=

∞∑
k=0

Bk
zk

k!
. (1.3)

Some easy values are:

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, . . . .

Indeed, we have

B2k+1 = 0 for k ≥ 1.
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4 A. Raghuram

Theorem 1.1.4 The critical values for ζ(s) are given by:

1. The critical values to the right of the centre of symmetry:

ζ(2m) =
(−1)m+1(2π)2mB2m

2(2m)!
.

2. The critical values to the left of the centre of symmetry:

ζ(1− 2m) = − B2m

2m
.

See Neukirch [Ne99, Chapter VII, Section 1] for a detailed proof.

Remark 1.1.4.1 Let us note the special case ζ(−1) = −1/12 was ‘proved’

by Euler (and later rediscovered by Ramanujan) via the following in-

triguing calculation:

S = 1 + 2 + 3 + 4 + 5 + 6 + · · ·
4S = 4 + 8 + 12 + · · ·

−3S = 1− 2 + 3− 4 + 5− 6 · · · =
1

(1 + 1)2
= 1/4 =⇒ S = −1/12.

The non-critical values of ζ(s)

The non-critical values of ζ(s) are its values at non-critical integers, i.e.,

the values {ζ(2m + 1) : m ≥ 1} and {ζ(−2m) : m ≥ 1}. The values at

the odd positive integers are mysterious and the purpose of this workshop

is to understand these values via the Bloch–Kato conjectures. However,

the values at the negative even integers are trivial:

Lemma 1.1.5 (Trivial zeros) For any integer m ≥ 1, ζ(s) has a simple

zero at s = −2m.

Proof Put s = −2m into the functional equation to get:

πm Γ(−m) ζ(−2m) = π(1+2m)/2 Γ

(
1 + 2m

2

)
ζ(1 + 2m).

The right hand side is finite and non-zero, therefore so is the left hand

side; but Γ(−m) is a simple pole, hence ζ(−2m) is a simple zero.

What is mysterious about ζ(s) at s = −2m is not so much the value,

but rather the leading term:

ζ∗(−2m) := lim
s→−2m

ζ(s)(s+ 2m).

The mystery about ζ(2m+1) is equivalent, via the functional equation,

to the mystery about ζ∗(−2m). We mention the following transcendental

statements only for the sake of completeness:
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ζ-values 5

1. ζ(3) is irrational. (See Apéry [Ap79].)

2. The Q-span of {ζ(2m+1) : m ≥ 1} is an infinite-dimensional subspace

of R, i.e., infinitely many of the zeta values at odd positive integers

are Q-linearly independent. (See Ball and Rivoal [BR01].)

1.1.3 Borel’s Theorem

Tamagawa number of SLn/Q and ζ-values

Let n ≥ 2. Fix an isomorphism

Top exterior : (sln)/Z → Z.

This induces the Tamagawa measure on SLn(A) as follows: The mea-

sure dg on SLn(A) is the product of local measures dg =
∏
v dgv and

locally everywhere dgv is the Haar measure determined by the above

isomorphism. By definition, the Tamagawa number of SLn/Q is:

τ(SLn/Q) := vol (SLn(Q)\SLn(A)) .

Theorem 1.1.6 The Tamagawa number of SLn/Q is 1, i.e., τ(SLn/Q)

= 1.

See, for example, Weil [We58].

Corollary 1.1.7

n∏
m=2

ζ(m) = vol (SLn(Z)\SLn(R)) .

Proof The strong approximation theorem gives:

vol (SLn(Q)\SLn(A)) = vol (SLn(Z)\SLn(R))
∏
p

vol(SLn(Zp));

the left hand side is 1 by the above theorem, and for the right hand side

we have

vol(SLn(Zp)) =

n∏
m=2

(1− p−m),

where all the volumes are with respect to the Tamagawa measures.

It is rather piquant to note that ζ(3)π2/6 = vol (SL3(Z)\SL3(R)) .
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6 A. Raghuram

Statement of Borel’s results

In this section we give a very brief sketch of some results of Borel [Bo77].

The serious reader should consult Borel for all details. Consider the

following diagram of cohomology groups:

H•(SU(n); C)
µ•

// H•(SLn(R)/Γn; C)

H•(sln(C); C)

α•

cc

β•

::

where Γn is an arithmetic torsion-free subgroup of SLn(Z). The mor-

phisms α• and β• are defined in terms of invariant forms and α• is an

isomorphism; now define µ• := β• ◦ α•−1.

All the cohomology groups in sight are exterior algebras and we can

talk of indecomposable elements. (Let A be an algebra over a field which

is graded by subspaces {Ap}p∈N. The space of indecomposable elements

of A of degree p, denoted Ip(A), is defined to be the quotient of Ap

by the subspace of decomposable elements, i.e., subspace generated by

products of elements of degree less than p.)

We can also work with rational cohomology, and let us record the

following results of Borel: For an even positive integer m, the spaces

I2m+1(sln(Q); Q) and I2m+1(SU(n); Q) are 1-dimensional Q-subspaces

of the ambient complex spaces. (For brevity, we have let I2m+1(sln(Q);Q)

to stand for I2m+1(H•(sln(Q);Q)), etc.) Borel studied the effect of the

maps α• and β• on these one-dimensional lines, and proved

α•(I2m+1(sln(Q); Q)) = (πi)m+1I2m+1(SU(n); Q). (1.4)

See [Bo77, Proposition 5.4]. Similarly, one has

β•(I2m+1(sln(Q); Q)) = ζ(m+1) I2m+1(SLn(R)/Γn; Q), (n > 8m+5).

(1.5)

This involves a calculation of integrating a top-degree rational form on

a ‘modular symbol’ H/(Γ ∩ H) ↪→ G/Γ where H is a suitable SL1(D)

inside G = SLn; this is a Tamagawa number calculation, the simplest

case of which is briefly described in 1.1.3. For more details, see Borel’s

[Bo77, Théorème 5.5] and its proof.

The heart of Borel’s paper is to construct and analyze a certain canon-

ical morphism in a relative context (i.e., mod-maximal-compact) for real
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ζ-values 7

cohomology:

j•Γ : H•(SU(n)/SO(n);R) −→ H•(SLn(Z)\SLn(R)/SO(n);R). (1.6)

Observe that the right hand side is also group cohomology:

H•(SLn(Z)\SLn(R)/SO(n);R) ' H•(SLn(Z);R).

The main result of Borel, stemming from (1.4), (1.5) and (1.6), is the

following:

Theorem 1.1.8 Let m = 2r be an even positive integer and let n >

8m+ 5. Then

j•Γ(I4r+1(SU(n)/SO(n); Q)) =
ζ(2r + 1)

π2r+1
I4r+1(SLn(Z); Q).

See [Bo77, Théorème 6.2]. This result has an interpretation in terms

of K-groups, which we discuss in the next subsection after introducing

K-groups.

1.1.4 K-groups of Z

For us, Km is a functor from the category of commutative rings to the

category of abelian groups; Sujatha’s lectures in this workshop go more

deeply into algebraic K-theory that is necessary to study the Riemann

ζ-function. One calls K0(R) the projective module group and it is defined

to be the quotient of the free abelian group on [P ] where P runs over iso-

morphism classes of a finitely generated projective module by the normal

subgroup generated by the relations [P⊕Q]− [P ]− [Q]. Since Z is a PID,

and every finitely generated projective module is free, we get K0(Z) = Z.
The group K1(R) is called the Whitehead group and it is defined to be

the quotient GL(R)/E(R) where GL(R) := lim−→n
GLn(R), the limit taken

over the maps GLn(R)→ GLn+1(R) given by g 7→ diag(g, 1); and E(R)

is the subgroup generated by all elementary matrices. Since we have

taken R to be commutative, the determinant homomorphism is defined

and one has K1(R) ∼= R× ⊕ (SL(R)/E(R)). The group SL(R)/E(R)

is often denoted SK1(R) and is called the reduced Whitehead group.

If R is a Euclidean domain, one knows that SK1(R) = {1}. Hence

K1(Z) = Z× ∼= Z/2. (See, for example, Milnor [Mi71].) For a ring R,

one defines

Km(R) := πm(BGL(R)+), (1.7)
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8 A. Raghuram

i.e., the m-th homotopy group of Quillen’s plus construction applied to

the classifying space of the limit GL(R) of general linear groups.

Computing K-groups is a highly non-trivial problem, and even for

K-groups of Z not everything is known. In the next subsection we give

a summary of some more precise results on Km(Z).

What is known about Km(Z)?

The following brief summary on Km(Z) is taken from Weibel [We05].

We begin with two general finiteness results:

1. Km(Z) is a finitely generated abelian group. (Quillen [Qu73].)

2. Rank of Km(Z) is 1 if m ≥ 5 is 1 mod 4; in all other cases Km(Z) is

a finite group, i.e., has rank 0. (Borel [Bo74].)

K0(Z) = Z K8a(Z) = 0?

K1(Z) = Z/2 K8a+1(Z) = Z⊕ Z/2
K2(Z) = Z/2 K8a+2(Z) = Z/2c2a+1

K3(Z) = Z/48 K8a+3(Z) = Z/2w4a+2

K4(Z) = 0 K8a+4(Z) = 0?

K5(Z) = Z K8a+5(Z) = Z
K6(Z) = 0 K8a+6(Z) = Z/c2a+2

K7(Z) = Z/240 K8a+7(Z) = Z/w4a+4

(1.8)

The question marks mean that it is expected K4a(Z) = 0. This is

proven for a = 1 and is open as yet for a ≥ 2. The numbers cm and wm
are defined as follows:

cm = numerator of (−1)m+1B2m/4m. (1.9)

(It is understood that if we talk of the numerator a of a rational number

a/b then one has taken the rational to be in its lowest form, i.e., a and b

are relatively prime.) LetW be the group of all roots of unity in Q. Then

W is naturally a GQ = Gal(Q/Q)-module, since if w ∈ W and g ∈ GQ
then g(w) ∈ W. For any integer m ≥ 1 we let W(m) stand for the GQ-

module where g ∈ GQ acts on w ∈ W(m) = W via g ·m w := gm(w).

One says W(m) is the Galois module W with a Tate twist by m. Now

define

wm := |{w ∈ W : gm(w) = w, ∀g ∈ GQ}|, (1.10)

i.e., it is the cardinality of the set of those roots of unity which are fixed

by GQ under the m-twisted action.
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ζ-values 9

Borel regulators and non-critical values

Let us go back to Theorem 1.1.8: recall that m = 2r is an even positive

integer and n� m, then

j•Γ(I2m+1(SU(n)/SO(n); Q)) =
ζ(m+ 1)

πm+1
I2m+1(SLn(Z); Q).

Now pass to the limit over n. Define Xu := lim−→n
SU(n)/SO(n) and

SL(Z) := lim−→n
SLn(Z). Then it is known that we have a duality:

I2m+1(Xu;Q) × (π2m+1(Xu)⊗Z Q) −→ Q,

and similarly,

I2m+1(SL(Z);Q) × (K2m+1(Z)⊗Z Q) −→ Q.

(Recall that m = 2r is even, and so K2m+1(Z)⊗ZQ is a one-dimensional

Q-vector space.) Fix a basis x∗m for π2m+1(Xu), and y∗m for K2m+1(Z).

Let xm and ym be the dual basis.

Definition 1.1.9 (Borel Regulators)

j•Γ(xm) = Rm(Q) ym.

From Theorem 1.1.8 and Definition 1.1.9 we get the following beautiful

result of Borel on the non-critical values of Riemann zeta function:

Theorem 1.1.10 (Borel) Let r ≥ 1. Then

ζ(2r + 1)

π2r+1
∼ R2r(Q),

where ∼ means up to a non-zero rational number.

1.1.5 Lichtenbaum’s conjecture

Critical values and K-groups

Reference: Lichtenbaum [Li73, Conjecture 2.4].

Theorem 1.1.11 (Critical values on the left) Up to 2-torsion for any

odd integer m ≥ 1

|ζ(−m)| =
|K2m(Z)|
|K2m+1(Z)|

.

Proof Follows from Theorem 1.1.4 and (1.8).
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10 A. Raghuram

The caveat ‘up to 2-torsion’ is necessary as can already be seen from

the case m = 1:

ζ(−1) = −B2

2
= − 1

12
,

whereas |K2(Z)| = 2 and |K3(Z)| = 48 giving

|K2(Z)|
|K3(Z)|

=
1

24
.

K-theoretic Lichtenbaum’s conjecture

In [Li73, Question 4.2] Lichtenbaum formulated a conjecture for ζ-values

at any negative integer −m in terms of certain higher regulators R′m(Q)

which are essentially the same as Borel’s regulators Rm(Q). For Licht-

enbaum’s definition of R′m(Q) see [Li73, p.498–499].

Conjecture 1.1.12 (Any special value on the left) For any integer

m ≥ 1, possibly up to 2-torsion, we have

ζ∗(−m) = ± |K2m(Z)|
|K2m+1(Z)tors|

·R′m(Q).

A slightly modified version of Conjecture 1.1.12 was proved for any

abelian number field by Kolster, Nguyen Quang Do and Fleckinger

[KNF96, Theorem 6.4]; some errors on Euler factors in [KNF96] have

been corrected in [BN02]. For a result character by character, see [HK03].

The reader is also referred to the survey article by Flach [Fl04] for a his-

toric introduction.

Cohomological Lichtenbaum’s conjecture

The K-theoretic Lichtenbaum’s conjecture can be restated in the lan-

guage of Galois cohomology. The connection is provided by the Quillen–

Lichtenbaum conjecture which relates K-groups to Galois cohomology.

(The reader should look at Lichtenbaum [Li73, Conjecture 2.5] and

Huber–Kings [HK03, p.410].) Indeed, the formulas in (1.8) cited from

[We05] use this connection between K-groups and Galois cohomology.

Give Spec(Q) the étale topology. Then the category of discrete GQ-

modules is equivalent to the category of sheaves of abelian groups over

Spec(Q), and Galois cohomology is the same as sheaf cohomology which

in this case is called étale cohomology. For any m ≥ 1, the GQ-module

W(m) gives a sheaf on Spec(Q). Denote this sheaf also by W(m). Fix a

prime `. Let X` := Spec(Z[1/`]), and let

j : Spec(Q) ↪→ X`
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