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CHAPTER 1
THE LAWS OF ATMOSPHERIC MOTION

Another storm a’brewing—I hear it sing i’ the wind

NEWTON’S LAWS OF MOTION

THE problem of dynamics as applied to the atmosphere is to trace the relation
between the motion of the air as observed in the winds at the surface by anemo-
meters, in the upper air by aeroplanes, or as inferred from the motion of
clouds or balloons, and the ““forces” which are assumed to be operative in
producing or in changing the motion. For the solution to be accepted the
relation established must be quantitative as well as qualitative, that is to say
the forces which are involved must be shown to be adequate to give not merely
a general idea of the phenomena which have to be explained but also an
accurate measure of the motion which has been observed.

When a satisfactory relation of that kind has been established between
the observed motion of the air and the forces available to produce it and main-
tain it, the same process can be applied to changes in the present state of
motion, which will be produced by the operation of the available forces, pro-
vided these can be expressed numerically. The prediction of weather will then
become a ‘‘ mathematical certainty.”’

The classical example which mathematicians have in mind when they
endeavour to trace a quantitative or numerical relation between the forces
operative in the atmosphere and the motion which results therefrom is the
extraordinarily accurate solution of the problem of the dynamics of the solar
system as expounded by Sir Isaac Newton in his Philosophiae Naturalis
Principia Mathematica which contains also applications of the same principles
to other dynamical problems.

For more than two centuries that exposition was regarded as the out-
standing example of the ingenuity of the human mind—genus humanum ingenio
superavit—and may still be so regarded unless the modification introduced in
the present century by Prof. A. Einstein on the new principle of relativity of
motion be considered a still more impressive example of human genius.

The mysterious influence concealed under the name of gravity has be-
come a spatial contortion, and we have found the new point of view useful
for weather-study in relation to the other mysterious influence ““entropy.”

The efforts which have been made hitherto by mathematicians to solve the
problem of the dynamics of the earth’s atmosphere have been guided by the
Principia of Newton, and based upon three laws or axioms, which express in
singularly well-chosen words the general ideas of force in relation to motion.
They were evolved in the seventeenth century from the observations of
astronomers and the experiments of natural philosophers. In the original
Latin, which hardly rieeds translation, they are as follows:

SMMIV (1) I

Tempest, Act 11, Sc. 2.
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2 I. LAWS OF ATMOSPHERIC MOTION

Axiomata, sive Leges motus

Lex I. Corpus omne perseverare in statu quo quiescendi vel movendi uniformiter
in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare.

Lex II. Mutationem motus proportionalem esse vi motrici impressae, & fieri
secundum lineam rectam qua vis illa imprimitur.

Lex III. Actioni contrariam semper & aequalem esse reactionem: sive corporum
duorum actiones in se mutuo semper esse aequales & in partes contrarias dirigi.

It is one of the great achievements of the enunciation of the laws of motion
that they embody a conception of force which can be employed in mathematical
argument, namely that the measure of force, whatever name be given to it, is
the rate at which the momentum of the moving body is changing. Momentum
must be understood to mean a new physical quantity expressed numerically
as the product of the mass of the moving body and its velocity. If the rate
of change is uniform, as it is assumed to be in many illustrative examples, the
force is expressed by the actual change of momentum in the unit of time—
in other words the mass multiplied by the acceleration.

The conception of force

The reader will notice that he is assumed to be acquainted with what is to
be understood by wis (force), vires impressae (impressed forces), vis motrix
impressa (impressed motive force) and actio, reactio, for which the terms action
and reaction are used in English. And indeed the conception of force, which
is of course fundamental if forces are to be employed to calculate motion, is
one which no ordinary person makes any difficulty about understanding. And
yet, when the basis of the understanding comes to be examined, it is difficult
to realise that in the specification of any force anything more is meant than
that directly or indirectly, somehow and somewhen, the force has shown a
capacity for resisting or balancing the attractive force of gravity.

It was doubtless the brut realism of this statement compared with the
idealism of measuring force by momentum, which is never or hardly ever
exactly possible, that led some distinguished engineers and mathematicians to
insist upon measuring forces in terms of that of gravity upon a pound, and to
turn a scornful lip towards the poundal and the foot-poundal for measuring
force and work, which were offered by the advocates of systematic international
measurement as a concession to British prejudice in such matters.

Let us note that, in order to be consistent in estimating force, the motion
must be referred to the proper centre, otherwise we may arrive at para-
doxical conclusions. For example, consider two independent planets, masses
M and m, acting upon one another with some force like gravity, and consider
the motion of each as observed from the other. Dealing with a period of time
so short that the variation in the intensity of the force is insignificant the
changes in their velocity in unit time are 7 and v. The force on the one is MV
and the force on the other mv. But since velocity is relative the approach of
M to m is the same as the approach of m to M; hence v and V are equal; but
by Law III the action MV is equal to the reaction mv. Hence the two masses
must be equal—which does not appear in the original hypothesis. The velocity
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FORCES 3

measured ought not to be that of one body relative to the other but of each
with regard to the ‘‘centre of mass” of the two.

The principles of Newton in the hands of mathematicians have been found
serviceable in the solution of many dynamical problems relating to the
heavenly bodies, the earth and its figure, the sea and its tides, the air and its
pressure; in particle dynamics, rigid dynamics and hydrodynamics; and the
feeling is quite general among mathematicians that the line of approach to
the solution of the general meteorological problem is by the mathematical
evaluation of the effect of known forces upon the state of the atmosphere
which can be regarded as initial. In the case of the atmosphere the question
that arises is whether we really know all the forces which are operating to
produce and maintain the motion which may be observed in a sample of air.

It is this practice of assuming a knowledge of the forces in order to com-
pute the motion instead of using the observed motion in order to infer the
forces that constitutes the difference between the deductive, or mathematical,
and the inductive, or observational method of treating the subject, either of
which may furnish appropriate material for this volume.

The recognised forces

What then, let us ask, are the forces which meteorologists can offer to
mathematicians for their enterprise? Clearly gravity, the great Newtonian
force, is one, of which the character and magnitude are quite well understood
even if its origin has still to be accounted for.

The latest view of mathematical physicists, as expressed by Einstein, seems
to be that the force of attraction, or the change of momentum which is its
equivalent, is an affection of space in the neighbourhood of material objects
such as the bodies of the solar system; and it may be worth the reader’s while
to think of that mode of explanation in relation to the restriction of the motion
of air to an isentropic surface which we have set out in chap. vI of vol. 111.

Secondly there is centrifugal force which is perhaps not really a Newtonian
force at all, and yet comes naturally to the mind when one thinks of a heavy
bob, as that of a pendulum, whirled round one’s head at the end of a string.
Something is wanted to account for the pull of the bob on the string, and if we
say that the pull, which requires the tension of the string to balance it, is
centrifugal force we can urge in justification that on occasion it may be more
than the string can bear and it is centrifugal force which produces disruption.
If not, what does? In the atmosphere a centrifugal force which is never absent
except at the very poles is that due to the rotation of the earth. It takes a hand
in every meteorological phenomenon by pushing sideways any air that moves.

Next pressure, the statistical expression of momentum transferred by the
impact of the molecules of a parcel of air upon its boundaries, in practice only
a special manifestation of the force of gravity. If we consider the motion of
the air we regard the bombardment of any part of its boundary by the mole-
cules of its environment as producing a force normal to the surface bombarded,

I-2
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4 I. LAWS OF ATMOSPHERIC MOTION

measured by the product of the pressure and the area of the surface, and
balancing the pressure of the interior.

Fourthly—flotation, or, as commonly used in meteorology, convection, on
the Archimedian principle of an upward force, equal to the weight of fluid
displaced, acting upon any body immersed in a fluid, this also is another effect
of gravity.

Fifthly—surface tension, the expression of what is called capillarity,
which moulds water-drops into spherical shape as we have seen in vol. 1II.
The peculiarities of this form of force are held to be responsible for the
dynamical manifestations of thunderstorms, but.it operates only in the sur-
faces of liquids, unless the colloidal properties of mixtures of foreign bodies
with air may be in some way associated with it.

Sixthly—the force of turbulence, the tendency of moving air when it
is passing other air with sufficient rapidity to roll itself up into something
suggestive of a whirl or vortex. We shall have something to say later about
the vitality of this particular mode of motion.

Seventhly—friction, a mysterious force which intrudes itself whenever and
wherever the surfaces of bodies in contact slide, or even tend to slide, one past
the other; and which, so far as the atmosphere is concerned, has something to
do with viscosity—of which later.

There are other forces which have sometimes to be taken into account by
those who would refer to Newton’s laws of motion as embodying the principles
upon which an answer must be found to the oft-repeated question, “‘ Will it
rain to-morrow?” But the seven examples which we have cited are sufficient
to indicate that the problem is liable to a good deal of complication.

The classical mathematical method of dealing with any dynamical problem
is to write down equations representing the balance between changes of
motion (in terms of momentum), regarded as unknown, and impressed forces,
regarded as known when normal information is available.

Natural philosophers have not always waited for that stage; they have on
occasions proposed instead such approximations to a solution as can be
obtained by general reasoning from their knowledge of the nature and dis-
tribution of the operative forces.

As we have already seen (vol. 1, p. 288), that kind of reasoning provided
an explanation of trade-winds and monsoons, of land- and sea-breezes, based
upon general considerations of thermal convection and the rotation of the earth.
Such explanations appeared for many generations in the text-books of physical
geography ; but there was no attempt to obtain numerical values either of the
direction or of the velocity of the winds or their variation from season to
season. In such questions however it is unsafe to disregard any influence or
assume a complete knowledge of the causes, and so long as there is any
uncertainty about the causes it is fair to say that for nearly all purposes
an accurate description of the phenomena is the best substitute for an
explanation.

Let us accordingly pass in review the steps which have been taken towards
the numerical expression of the forces which we have enumerated.
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FORCES 5

1. Gravity—strictly speaking the force of attraction between all material
substances in the universe, which in the case under our consideration would
add to any mass, free to move, a velocity of approximately 981 cm/sec in
every second, directed towards the centre of gravity of the earth. In practice
however the gravity denoted by the letter g takes account also of the earth’s
rotation and is the acceleration of any body, free to move, along the “ vertical,”
that is to say at right angles to the ““horizontal” or ““level” surface which
forms the conventional boundary of a fluid earth. It points to the centre of
gravity of the earth only at the equator and at the pole; elsewhere in the
northern hemisphere it points south of the centre of gravity, in the southern
hemisphere to the north of it.

Its numerical expression for a point on the earth’s surface is given by the
equation :

g = 980617 (1 — ‘00259 cos 2¢) (1 — 52/4¢€) c, g, s units, where ¢ is the latitude, = the
height above sea-level, and € the earth’s radius
= 980617 (1 — *00259 cos 2¢4) (1 — 1°96 X 10772), where z is the height in metres.

[e is chosen as a symbol for the earth’s radius because it comes near to being a
semicircle with a radius from its middle point.]

This formula takes into account the additional attraction of the high ground and
supposes the mean density of the elevated area to be equal to one-half of the mean
density of the earth. .

980617 is the value of the gravitational acceleration in c, g, s units at sea-level in
latitude 45°. For the determination of gravity at points above the earth’s surface, the
factor 1/(1 + 2/e)?, which equals approximately (1 — 22/¢), replaces (1 — 52/4¢).

(Computer’s Handbook, Introduction, M.O. 223, 1921, p. 9.)

2. Centrifugal force. The numerical expression for the effect produced
at a point on the earth’s surface by the rotation of the earth is represented by
an acceleration w? cos ¢ outwards, perpendicular to the axis of rotation,
where w is the angular velocity of the earth and e cos ¢ the distance of the
point affected from the axis of rotation. We have seen that the value of g takes
account of the earth’s rotation. The vertical component gives a force ew? cos>$
in diminution of g. The horizontal component gives a force ew?cos ¢ sin ¢
directed towards the equator. This is balanced by the inclination of the earth’s
surface to the surface of a true sphere of the same mass and volume as the
carth. The geometrical slope towards the pole which is represented by the
excess of the equatorial radius (6377 km) over the polar radius (6356 km), and
which therefore gives a greater distance from the earth’s centre at the equator
than at the poles, is known as the geoidal slope (vol. 111, p. 296). It does not
mean that a body on a perfectly smooth sea actually drifts from the equator
to the pole, but it would so drift (and the water too) if the earth’s rotation
should by any chance ease off.

3. Pressure. We have so often used the expression of pressure in previous
volumes that here we need only remind the reader that in computing pressure
we assume a quiescent atmosphere (vol. 111, p. 215) and express the pressure
numerically with the aid of Laplace’s equation dp = — gpdz. In considering
the motion of an element of fluid it is the difference of pressure on two opposite
sides that counts as the vis impressa upon the element.
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6 I. LAWS OF ATMOSPHERIC MOTION

4. Convection. This likewise has been in familiar use all through the work
of the three previous volumes. Chapters viir and X in vol. 111 have already been
devoted to it. The numerical expression for the force of flotation of a volume
v of air of density p in an environment of density p’ is [ffg (o’ — p) dxdydz or,
if local variation of density is negligible, g (o’ — p) .

5. Capillarity. We have already explained that capillarity only comes in
when water-drops or other fluid bodies are under consideration. We may refer
to the chapter on the subject in Maxwell’s Theory of Heat, or any other text-
book of physics, for the details of the numerical expression of the force. The
effect of capillarity is expressed as a tension in the surface as though it were
made of flexible material. Its numerical value is expressed by the force per
unit of length of a line drawn in the surface. The tension of the surface be-
tween water and air is 74 dynes per cm, and of that between mercury at
2go-5tt (17-5° C) and air 547 dynes per cm.

6. Diffusive forces: viscosity and turbulence. These forces cannot be
evaluated like the five which we have considered. Their numerical expression
is a statistical one and is derived from a consideration of experiments on
diffusion in which the progressive distribution over one part of space, of
matter or energy drawn from an adjacent part of space, is watched.

7. Friction. Here we have to distinguish between viscosity which gives
the equivalent of a frictional or tangential force between two parts of a fluid
moving one past the other and the friction between a fluid and a solid surface
over which it is moving. The former may be regarded as subject to a general
law for which a coefficient of viscosity is appropriate, the latter depends not
only on the viscosity of the fluid but also on the nature of the solid surface.

CONSERVATION OF MASS AND ENERGY

The numerical expression of the diffusive and frictional forces of the
atmosphere requires a more formal introduction than the familiar forces of
gravity, centrifugal action, pressure and convective force ; but before dealing
with that part of the subject we may remind the reader that the whole of the
calculus of weather which we have in view accepts as primary conditions the
laws of conservation of mass and conservation of energy as explained in the
introductory paragraphs of the chapter on ““ Air as Worker " (chap. v1, vol. 111).
We must include these conditions among the laws which govern the move-
ments of the atmosphere. Let us therefore state them.

Law IV. Conservation of mass. In the computation of any atmospheric movement
the expression of the distribution of the mass of the moving parts must account for any
changes which may take place in the boundaries of a selected parcel and the mass con-
tained within them on the understanding that the total mass of the whole system, viz
the moving air and its environment, is unalterable.

The expression of this principle of the conservation of mass is referred to
the coordinates in which the position of any parcel is expressed and will be
included as the ‘“equation of continuity” in our setting out of the general
equations of motion of a parcel of air in the free atmosphere.
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CONSERVATION 7

In considering the behaviour of *‘ Air as Worker ” in chap. v1 of vol. 111 we
have not paid any special attention to the particular forms of ‘“‘work” which
the air may perform, whether the transference of energy expressed by work
results in the kinetic energy of moving mass, or any other of the forms which we
have enumerated ; but in the dynamics of the atmosphere these differences in
the forms of energy are precisely the subjects of study. It will be sufficient
here if we quote the statement of the principle as expressed by Maxwell.

Law V. Conservation of energy. The total energy of any material system is a
quantity which can neither be increased nor diminished by any action between the
parts of the system, though it may be transformed into any of the forms of which
energy is susceptible.

This principle indeed is so vital to the study of the dynamics of a material
system that it can be used as the starting-point for the expression of the
equations of motion following the method of Lagrange to which reference will
be made in chap. I1.

What exactly is the material system under which the energy of the move-
ments of the atmosphere can be studied requires a little consideration because
it must take account of all the operating forms of energy of which gravity
and solar radiation are the most important. But perhaps it will be sufficient
if we regard the rotating earth with its atmosphere as the material system,
allowing for radiation as energy supplied from space or lost thereto.

CONSERVATION OF MOMENTUM, LINEAR AND ANGULAR

While we are dealing with questions of conservation we must remember
certain conditions relating to momentum.

A particular form of conservation is implied in Newton’s third law. The
equality of action and reaction between two bodies requires that if the action
and reaction are measured by change of momentum, in any case of the in-
fluence of one body on the other the gain of momentum by the one body
corresponds with the loss of momentum in the same direction by the other.
Hence the momentum and indeed the component of momentum in any given
direction is conserved during the dynamical operation of one body on another.

We must understand that the measure of the motion is duly taken with
regard to the common centre of gravity of the two, otherwise we get into
the difficulty suggested on p. 2.

This form of conservation is a notable matter because the two bodies
regarded as a system may lose energy while momentum is conserved.

For example, two bodies of equal mass impinging one on the other with
equal velocities with reference to their common centre will have the kinetic
energy of both annihilated during the transference of momentum on impact,
and lost unless the heat equivalent of the energy is brought into account.
For this form of energy the laws of motion make no allowance.

There is another form of conservation of momentum which can be de-
duced from the laws of motion, namely that of angular momentum (see
p- 45). That also has interesting aspects from the point of view of energy.
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8 I. LAWS OF ATMOSPHERIC MOTION

The angular momentum or moment of momentum of a moving mass with
regard to a point in the plane of its motion is measured by the product of
the momentum mv and the distance s of the line of momentum from the
point. It is therefore represented algebraically by mvs and geometrically by
twice the area of the triangle formed by joining to the point of reference
the extremities of a line representing the momentum.

If the force under the action of which the mass is moving is a central
force, that is if it always passes through the point of reference, it can never
produce any acceleration at right angles to itself, and therefore though the
velocity may change the moment of momentum is not affected. It remains
constant throughout the motion. The motion will be such that the area of
the triangle formed by joining the point of reference to the extremities of
the line representing the velocity will be constant.

This is the expression of the law of equal areas, known as Kepler’s first
law of the motion of the planets with reference to the sun.

What is true of a planet revolving round the sun is equally true of a ring
of particles rotating about a centre, and therefore true for a ring of air, or
part of a ring, rotating about the earth’s axis.

It is a property of great importance in the study of atmospheric motion,
and we therefore enunciate:

Law VI. Conservation of angular momentum. Any portion of a ring of air rotating

about the earth’s axis under the influence of forces which are directed to or from the
axis will conserve its moment of momentum or angular momentum.

An experiment in illustration of this law is described by Aitken (see p.256).

THE LAW OF DIFFUSION

Let us now consider in greater detail the nature of the diffusive forces.
In the illustration of the superior mirage on p. 61 of vol. 111 we have referred
to gradations of density of a solution of sugar as produced by the gradual
diffusion of sugar from the bottom of the vessel upwards through the water of
the layers above it. The gradation may be expressed by the strength of the
sugar solution (the amount of sugar per unit of volume) at different heights

above the layer at the bottom. The process is expressed by an equation of the
2

type g—f: p.%g, derived by J. B. J. Fourier for the diffusion of heat by con-

duction in a bar of metal and known by some as Fourier’s equation and by

others as Fick’s equation.

The diffusion may be the diffusion of heat (conduction), the diffusion of a
salt through water, or of water-vapour through air, or the diffusion of momen-
tum between two streams of air with different velocities (viscosity), or the
diffusion of potential temperature (entropy) by turbulence. All these pro-
cesses are reduced to one form of expression by the consideration that the
quantity of the element which diffuses across any area is proportional to the
change in the strength of the element along its path. The coefficient of pro-
portionality is known as the coefficient of diffusion. Hence at any point of its
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VISCOUS FORCES 9

progress the rate of change (dm/dt) in the strength of the diffusing element is
proportional to the space rate of change of the gradient of the element along
the line of travel. In algebraical form the law is expressed as %’:‘ =u 3;1:,
where p is a constant different for each of the different diffusive processes.

Thus we may enunciate as a law which takes its part in the control of
atmospheric motion:

Law VII. In an atmosphere stratified in layers, when the rate of change of an
element with respect to time is proportional to the space rate of change of the gradient
of the element in the direction of flow, the element is said to be diffusing.

The simplest case is that of conduction of heat through a body of homo-
geneous material in which the diffusing element may be taken to be the energy
expressed by temperature (vol. 111, p. 223),and we can consider the flow of heat
from one side of a conducting plate to the other.

Viscosity!

In the same way we can treat viscosity which is used in the expression of
the force at a surface of separation in a stream of air the layers of which are in
relative motion. The average momentum of the molecules of air is greater in
a layer of greater velocity and the force arises, as we have said in chap. viIt
of vol. 111, from the exchange of mass between two layers in contact in con-
sequence of the inherent velocity of the movement of the molecules of which
the gas is composed. The mean square of the molecular velocity of a gas is
V2 = 3p/p, where p is the pressure, p the density (which must be expressed in
terms of the fundamental units). Hence regarding air as a‘‘ homogeneous ” gas
with a density of -oori61 at 3oott, and pressure 10°c,g,s units, we get
V2 = (3x 108X 10%)/1-161 cm?/sec? = 2:583 x 10%; V'= 5-08 X 10* = 50800 cm/sec
as the velocity of mean square at that temperature.

The exchange that takes place in consequence of the lively bombardment
of one layer by its neighbour carries fast-moving air downwards and slow-
moving air upwards and tends to equalise the momentum much in the same
way as, on a larger scale, the turbulence of the flowing air produces a diurnal
variation of wind-velocity as explained by Espy and Koppen, see p. 96.

The effect of viscosity in a stream of air, the consecutive layers of which
show velocity increasing at the rate dV/dz per unit of distance = across the
stream, is a retarding force F opposite to V acting upon each unit area of the
faster moving layer such that F' = — udV/dz, where u is called the coefficient of
viscosity.

The numerical value of u for air at o° Cin c,g,s units is 0-0oo168. Hence
in a horizontal air-current which increases in the vertical at 1o m/sec per km of
height, or -o1 cm/sec per cm, the retarding force upon any square centimetre
of any layer is -01x-000168 dynes, or 1-68x 1072 dynes per square metre;
the rate of loss of momentum across that area of the upper layer is
1-68 x 107% g cm/sec’.

1 See a lecture on ‘ Turbulence,’ by G. I. Taylor, Q.J. Roy. Meteor. Soc., vol. L111, 1927, p. 20T.
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10 I. LAWS OF ATMOSPHERIC MOTION

The dimensions of F are M/LT? and in consequence the dimensions of u
are M/LT, that is mass per unit of length time.

So far we have supposed the direction of the stream V to be the same at
all levels, differing only in speed in consequence of the viscous friction. That
might be so in a laboratory experiment, but in the free air the earth’s rotation
always gives a force varying with the speed and at right angles to the motion.

To allow for that in the frictional force we must take that force as equiva-
lent to the rate of change of momentum in the stream. F will be equal and
opposite to dM/dz and therefore proportional to dV/dz.

If we can disregard variations in the density of the viscous substance and
concern ourselves only with the relative motion of successive layers, it may
be convenient to base the calculations on a volume-unit instead of the ordinary
mass-unit. Thus we can choose the mass of unit volume of the fluid as mass-
unit instead of a gramme, understanding, of course, in that case that all
transference of momentum is by change of velocity without any change of
density, a condition not strictly satisfied in the case of air or any other gas,
but sufficiently nearly so for most practical purposes. When this mass-unit
is employed, the coefficient of viscosity is called ‘‘kinematic” as distinguished
from the original dynamic coefficient and is denoted by v». The dimensions of
v are L¥/T.

To keep the viscosity equation numerically true the transfer of momentum
per unit of area, which is expressed in ordinary c,g,s units as F' = — udV/dz,
becomes F' = — vdV/dz, as expressed in ‘‘kinematic units” where v = u/p.
In these kinematic units the unit of mass is the mass in grammes of a cubic
centimetre of the air.

With viscosity measured in this kinematic fashion, force is the rate of change
of the momentum of a cubic centimetre. The loss of momentum per second
across a square metre of surface in the case quoted above for air of density
-00125 g/cc is 800 x 1.68 x 10~2 or 1344 cm?/sec. This expresses the transfer
of momentum from an upper surface to a lower one across a layer in which
the rate of change of velocity and consequently the transfer (or conduction)
of momentum is uniform throughout the layer. What the upper surface loses
the lower surface gains: each of the intermediate surfaces receives the same
amount from the one next above and transmits the same to the one next below.

In order to study the changes in the distribution of velocity in the inter-
vening layer, taking into account variations of velocity in the horizontal as

well as in the vertical, the unit of volume is convenient.

Consider an element 8x, 8y, 8z, with velocity V at the base and V' + %I-; dz

at the upper surface. The force in c, g, s units on the lower surface is
F = — pudx 8y 0V [0z and on the upper surface being opposite in direction to F'is

2
~(F+ af&) — by OV o+ udxdy T, 5z,

0z
oF oV R . C
Hence — Frs dz=p Ery 8x.8y .8z, orif Ris the force in dynamic units on the

element per unit of volume R = p 02V /022
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