

CHAPTER I

THE INFLUENCE OF SUN AND SPACE

SOME PRELIMINARY FIGURES

Conditions of balance between solar and terrestrial radiation for a horizontal black surface and a perfectly transparent atmosphere.

'Temperature (a) of a black horizontal surface Sun's altitude for balance	200 3½°	210 4‡°	220 5°	230 6°	240 71°	250 8½°	260 10°	270 113°	280 13¾°	290 15¾°	300 18°
Temperature (a) of a black horizontal surface Sun's altitude for balance	310 20}	320 233°	330 27°	340 31°	350 35‡°	360 40°	370 46°	380 53‡°	390 62‡°	400 79‡°	402 90°

Temperature (a) = tercentesimal temperature (tt) + \cdot 10 \pm 05 (Dict. App. Phys. vol. 1).

Mean solar constant 135 kilowatts per square dekametre, 1.93 gramme calories per square centimetre per minute. Stefan's constant of radiation from unit area of a black body 5.72 × 10⁻⁹ kilowatts per square dekametre per degree of absolute temperature, or 82 × 10⁻¹² gramme calories per square centimetre per minute.

Constant of gravitation 6.6576×10^{-8} cm⁸/(g. sec²). Mean distance of earth from sun 149,500,000 kilometres. Minimum distance of earth from sun 146,700,000 kilometres. Maximum distance of earth from sun 152,100,000 kilometres.

In the fifteen chapters of our historical introduction we have sketched the evolution of modern methods of obtaining current information about the condition of the atmosphere and the facilities for dealing with the information thus obtained. In the present volume we offer for the reader's consideration a representation of the structure of the atmosphere, and some indication of the general circulation which is based upon observations collected in the manner described.

The representation cannot pretend to take account of all the observations which are, in one way or other, pertinent to the subject under consideration. The author, when he was director of the Meteorological Office in London, endeavoured to bring together in compact form the information about the weather of the British Isles which was collected in the ordinary course of duty and found himself responsible for about 2000 maps and as many pages of tables, expressing the data for one year. This was exclusive of the work on the meteorology of the sea for which, strangely enough, the publication of current data remains without adequate organisation on an international basis. The number of "significant figures" on a page, many of which are themselves summaries, may run to 5000. A year's output on this scale is quite beyond the capacity of any human being to keep in mind. In ten years a corresponding output for 50 countries of similar meteorological importance would provide 1,000,000 pages and would occupy some 100 metres' run of a substantial bookshelf. In the common jargon of the geophysicist the number of data to be dealt with is of the order 10¹⁰ to 10¹². The publication of such a vast number of facts for the several countries can only be justified on the understanding that the data are available for a large variety of economic and scientific

S M M II

I. THE INFLUENCE OF SUN AND SPACE

purposes apart from the special study of the atmosphere; the general solution of the atmospheric problem can only be approached by adopting some systematic plan of dealing with the vast accumulation of data.

By general consent the first step is to deal with "normals" for selected periods based upon the co-ordination of data extending over a long series of years. In accordance with international agreement, confirming a practice already established, the year and, wisely or unwisely, the calendar months are the selected periods.

Our first endeavour is therefore to represent the "normal" structure of the atmosphere for the month or the year and the normal circulation which corresponds therewith.

The atmosphere has thickness as well as length and breadth. The length and breadth at the surface constitute the base of the structure; and, for these, vast collections of data are available, though there are still many regions for which no adequate monthly data exist. For the thickness comparatively few data are available. We must therefore deal with the thickness in a much more sketchy manner than the base.

By the presentation month by month of the base of the normal structure and circulation, seasonal changes are disclosed which are the main features of climate all over the globe; and one of the primary problems of meteorology is to study these changes and if possible to ascertain their causes. On that account we have judged it necessary to represent the conditions month by month. In meteorological text-books, for purposes of illustration, it is often deemed sufficient to present the extremes of seasonal conditions as represented by the months of January and July. But for the purposes of study the transition months are indispensable because it is precisely the course and causes of transition that we seek.

When in this way the normal structure and the normal circulation have been briefly indicated, we shall endeavour to represent the data upon which we must rely for insight into the nature of those local deviations of the normal circulation which constitute the sequence of weather.

SOLAR RADIATION AND SUNSPOTS

While we set out here as clearly as we can the general features of the problem of the normal circulation of the atmosphere and its local variations, we must reserve for a subsequent volume the consideration of the progress that has been achieved in tracing the physical and dynamical relationships between the several features, and the contributions made thereby towards the explanation of the sequence of weather as the natural effects of ascertained physical causes.

The fundamental causes have to be sought in solar and terrestrial radiation. That aspect of meteorology we must consider in due course; but the details of the physical processes by which, for example, radiation is related quantitatively to temperature or its possible alternative vapour-pressure are

SOME PRELIMINARY FIGURES

still in the stage of development that belongs rather to the meteorological laboratory than to the normal observatory, and we must accordingly postpone the detailed consideration of the subject until we come to deal with our knowledge of the physical processes which are operative in the atmosphere.

Yet even here we think it desirable to enable our readers to keep in mind some of the information about the sun and its radiation, and about radiation from the earth into free space, the use of which may be called for at any time and does not require any expert knowledge of the details of the physical processes involved. The information includes, first, the distribution of solar energy over the different regions of the globe as computed by A. Angot¹ assuming a value for the "constant" of solar radiation, that is the amount of energy which would reach unit-area of receiving surface at right angles to the sun's rays at the outer limit of the atmosphere; we shall take a square dekametre as the unit area and in a table on pp. 4, 5 express the energy of radiation received by it in the ordinary unit of power, the kilowatt.

SOLAR ENERGY, SUNSHINE AND SOLAR HEAT

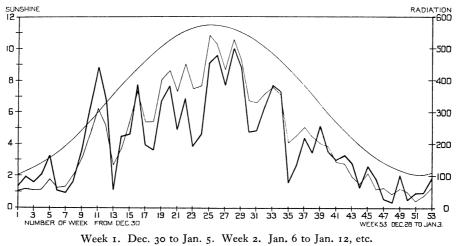


Fig. 1. Thick line — mean daily duration of sunshine in hours per day. Thin line — mean daily total of radiation received from sun and sky in kilowatt-hours per square dekametre of horizontal surface at Rothamsted week by week in 1924.

The smooth curve represents, on the same scale as that of radiation received, 50 per cent. of the solar radiation per square dekametre of horizontal surface.

The numbers for the smooth curve of solar energy in fig. 1 are the halves of those given in the column for 50° in the table of p. 4.

By way of comparison we have included in the same figure the amount of energy received by a Callendar recorder at Rothamsted in 1924 as daily averages for successive weeks; daily duration of sunshine for corresponding weeks is also shown. The latitude of Rothamsted is 51° 48′ N.

¹ Ann. bur. cent. météor., Paris, 1883, part 1 (1885), pp. B. 121-169.

I-2

3

I. THE INFLUENCE OF SUN AND SPACE

Energy, in kilowatt-hours, which would be received, if there were no atmosphere, upon a hundred square metres of horizontal surface by direct radiation from the sun with a solar constant of 135 kilowatts per square dekametre.

Totals for the middle day of successive weeks of the year. Multiply by 3.6×10^{13} to express the result in ergs per sq. dekametre. Multiply by 3.6 to express the result in joules per sq. centimetre.

NORTHERN HEMISPHERE											
	Date	90°	8o°	70°	60°	50°	40°	30°	20°	100	o°
22° 45′ S	Jan. 4			_	68	217	385	554	714	859	987
21° 50′ 20° 35′ 19° 01′ 17° 10′	,, 11 ,, 18 ,, 25 Feb. 1			4 19	80 99 124 155	234 255 285 320	401 424 452 487	568 590 616 647	728 745 767 791	869 882 898 915	990 998 1006 1015
15° 4' 12° 45' 10° 16' 7° 40'	,, 8 ,, 15 ,, 22 Mar. 1		20	45 78 123 174	193 238 289 344	360 406 456 509	525 568 614 660	680 717 755 794	818 846 875 903	934 952 971 987	1023 1030 1037 1041
SPRING 4° 58′ 2° 14′ S † 0° 32′ N 3° 17′ 5° 59′	,, 8 ,, 15 ,, 22 ,, 29 Apr. 5	30 186 338	63 123 196 281 377	234 298 370 444 524	404 467 532 599 667	564 621 679 736 792	709 757 805 852 896	833 871 906 941 973	932 957 980 1002 1021	1002 1014 1025 1033 1038	1042 1041 1038 1033 1025
8° 36′ 11° 5′ 13° 26′ 15° 36′	,, 12 ,, 19 ,, 26 May 3	482 617 743 857	482 608 732 844	603 683 763 841	733 798 860 918	846 898 946 991	938 976 1013 1045	1002 1027 1050 1072	1037 1050 1061 1069	1041 1041 1040 1038	1014 1002 990 977
17° 33′ 19° 16′ 20° 43′ 21° 53′	,, 10 ,, 17 ,, 24 ,, 31	957 1045 1116 1175	944 1029 1100 1157	915 984 1050 1103	971 1018 1058 1092	1031 1065 1095 1118	1072 1096 1115 1131	1088 1102 1112 1122	1076 1080 1083 1084	1034 1029 1025 1021	964 952 940 930
SUMMER 22° 44′ 23° 15′ *23° 27′ 23° 18′ 22° 49′	June 7 ,, 14 ,, 21 ,, 28 July 5	1215 1239 1249 1239 1215	1196 1220 1229 1222 1197	1142 1165 1173 1165 1142	1115 1130 1135 1130 1115	1134 1143 1148 1143 1133	1148 1150 1148 1139	1127 1130 1130 1129 1125	1085 1085 1085 1084 1083	1017 1014 1013 1013 1014	923 918 915 917 919
22° 01′ 20° 54′ 19° 30′ 17° 50′	,, 12 ,, 19 ,, 26 Aug. 2	1176 1119 1049 964	1157 1102 1033 949	1104 1052 987 918	1091 1057 1017 971	1115 1091 1062 1027	1127 1111 1091 1067	1116 1107 1095 1081	1080 1076 1072 1067	1015 1018 1021 1025	925 933 942 953
15° 56′ 13° 50′ 11° 32′ 9° 6′	,, 9 ,, 16 ,, 23 ,, 30	865 756 633 504	852 744 624 500	845 770 691 612	918 861 801 737	988 945 898 846	1040 1007 972 934	1064 1044 1021 995	1060 1050 1040 1027	1027 1029 1029 1029	965 977 988 999
AUTUMN 6° 33′ 3° 54′ † 1° 12′ N 1° 32′ S 4° 15′	Sept. 6 ,, 13 ,, 20 ,, 27 Oct. 4	365 217 68 —	393 297 212 138 77	533 456 382 312 246	672 606 541 477 414	794 738 683 628 571	894 851 805 759 713	967 936 903 868 832	994 972 950 926	1026 1021 1013 1004 992	1008 1017 1023 1027 1029
6° 56′ 9° 32′ 12° 1′ 14° 21′	,, 11 ,, 18 ,, 25 Nov. 1		30 	186 135 90 54	355 300 250 205	517 466 416 370	666 620 575 533	794 757 720 684	899 872 845 818	979 963 946 930	1027 1025 1021 1015
16° 30′ 18° 26′ 20° 05′ 21° 27′	,, 8 ,, 15 ,, 22 ,, 29	_	=	27 8 —	166 132 107 85	329 293 263 239	494 460 431 406	651 621 594 572	792 768 747 729	913 896 882 868	1008 1000 994 987
WINTER 22° 28' 23° 8' *23° 26' 23° 21'	Dec. 6 ,, 13 ,, 20 ,, 27	=			72 62 58 59	221 209 204 207	387 377 371 373	556 545 540 543	716 706 702 705	859 853 851 852	981 979 977 979
23° 7′	,, 31	*	Solstice.		62	211	378 † 1	547 Equinox.	709	855	981

The table shows the year divided into fifty-two weeks with one day, namely, December 31, over. The weeks are grouped in fours and fives. The groups of five introduce the seasons of the Farmers' year, spring, summer, autumn, winter, and are so chosen that their middle weeks contain the solstices and the equinoxes. The first days of the seasons would be March 5, June 4, September 3, December 3 respectively. Each group of five with a group of four before and after forms a quarter of the "May-year" which is arranged in accordance with the sun's declination, the dates of commencement being February 5, May 7, August 6 and

SOME PRELIMINARY FIGURES

5

Energy, in kilowatt-hours, which would be received, if there were no atmosphere, upon a hundred square metres of horizontal surface by direct radiation from the sun with a solar constant of 135 kilowatts per square dekametre.

Totals for the middle day of successive weeks of the year.

Multiply by ·86 to express the result in gramme calories per square centimetre.

				so	UTHERI	N HEMI	SPHERE					
o°	10°	20°	30°	40°	50°	60°	70°	80°	90°		k of -year	Orbit factor
987 990 998 1006 1015	1084 1085 1087 1087 1085	1157 1153 1148 1138 1127	1202 1192 1179 1161 1139	1218 1202 1180 1153 1121	1210 1188 1157 1119 1075	1189 1160 1118 1067 1008	1218 1170 1106 1027 945	1277 1227 1158 1072 969	1296 1246 1177 1089 984	I	9 10 11 12 13	·9832 ·9834 ·9839 ·9846 ·9855
1023 1030 1037 1041	1084 1079 1072 1064	1114 1098 1077 1054	1114 · 1083 1050 1014	1081 1040 992 944	1023 967 907 846	944 872 799 725	857 767 676 587	852 721 581 454	865 733 590 440	II	1 2 3 4	·9866 ·9879 ·9895 ·9911
1042 1041 1038 1033 1025	1052 1037 1019 1000 979	1029 1000 971 938 906	975 934 891 848 805	892 840 786 732 679	783 720 656 594 535	651 576 506 437 374	501 419 340 270 207	344 248 166 97 45	285 128 — —		5 6 7 8 9	·9929 ·9948 ·9968† ·9988 I·0008
1014 1002 990 977	957 934 911 888	872 838 806 776	761 720 679 643	628 581 535 494	478 425 378 335	316 263 216 176	151 104 65 36		_		10 11 12 13	1·0028 1·0048 1·0067 1·0084
964 952 940 930	868 848 832 817	748 722 701 683	609 579 555 535	456 424 398 377	297 265 239 219	142 113 92 74	15 3 —	=		III	1 2 3 4	1.0101 1.0116 1.0141
923 918 915 917 919	806 799 797 797 803	670 662 657 660 667	520 510 506 509 516	360 351 347 350 358	204 194 192 193 201	63 57 54 56 62					5 6 7 8 9	1.0151 1.0158 1.0164* 1.0167 1.0167
925 933 942 953	811 824 838 857	678 694 714 737	529 548 571 599	373 392 417 447	215 234 259 289	73 88 109 135		_			10 11 12 13	1·0166 1·0162 1·0157 1·0149
965 977 988 999	876 898 919 941	764 792 824 855	630 666 703 744	482 521 564 612	325 366 412 462	167 207 251 301	31 59 95 139	 4		IV	1 2 3 4	1.0137 1.0125 1.0110 1.0094
1008 1017 1023 1027 1029	963 983 1002 1019 1034	887 918 949 980 1008	784 826 869 911 952	660 710 761 814 867	516 572 632 694 756	356 417 482 551 622	192 251 319 393 473	35 82 146 223 313			5 6 7 8 9	1·0077 1·0059 1·0040† 1·0020 1·0000
1027 1025 1021 1015	1046 1057 1065 1072	1034 1058 1079 1098	991 1027 1061 1092	918 967 1014 1058	818 879 938 995	695 768 841 911	556 643 732 821	416 535 672 803	393 541 683 815		10 11 12 13	·9980 ·9960 ·9941 ·9922
1008 1000 994 987	1076 1077 1080 1080	1114 1126 1137 1145	1121 1145 1165 1181	1098 1133 1164 1189	1048 1096 1137 1172	979 1040 1095 1141	907 992 1072 1145	923 1031 1123 1200	938 1048 1141 1219	I	1 2 3 4	·9905 ·9889 ·9874 ·9861
981 979 977 979	1083 1081 1080	1152 1156 1158 1158	1193 1203 1207 1207	1208 1220 1227 1227	1199 1216 1224 1223	1176 1200 1211 1210	1199 1235 1251 1247	1257 1295 1311 1308	1276 1314 1331 1328		5 6 7 8	·9851 ·9843 ·9837* ·9833
981	1083	1158	1204 * Sols	1223 tice.	1218	1202	1237	1296 † Equin	1316 .ox.		x	.9832

November 5, these comply with the specification given in chapter III of vol. I. In the table the groups of four and five weeks are shown by spaces between the lines. Large spaces separate the quarters of the May-year, the smaller spaces the seasons, or quarters of the Farmers' year. The quarters of the present kalendar year are somewhat deranged, each one of them being in its turn a week late, that is to say, a quarter begins with Jan. 8, April 9, July 9, October 8. There is no great disadvantage about this so far as statistical meteorology is concerned; indeed it leads us to a kalendar adjusted to the duration of daylight.

6 I. THE INFLUENCE OF SUN AND SPACE

Secondly, we give a table of the accepted mean values of the solar "constant" during the period 1912-24 as determined by Dr C. G. Abbot and his colleagues of the Smithsonian Institution of Washington.

Mean values of the "solar constant" 1912-201 in kilowatts per square dekametre.

I	Mount Wilson	kw/(10 m) ²	H	Iump Mountain	kw/(10 m) ²
1912	May to September	135.6	1917	June to December	133.7
1913	July to November	132.7	1918	January to March	134.3
1914	June to October	136.4			
1915	June to October	136.0			
1916	June to October	135.6			
1917	July to October	136.5		Calama	
1918	June to October	135.7	1918	July to December	135.7
1919	June to September	135.9	1919	January to December	135.7
1920	July to September	134.6	1920	January to July	136.0

For the period 1918-24 we give the following provisional values of the solar constant for each month at the three stations Calama, Harqua Hala and Montesuma². A definitive table for Montesuma (1921-30) is given in chap. x.

Year		Ja	\mathbf{F}	Mr	Ap	My	J	Jу	Au	Se	Oc	No	De
	kw/(10 m)2		Thou	sandth	s of gra	mme c	alories	per squ	ıare cei	ntimetr	e per n	ninute	
1918	135.4	Cal	ama			19	00 +	21	54	44	39	41	62
1919	135.8	43	49	41	53	40	55	54	53	39	53	53	50
1920	136.0	64	56	45	52	53	39	45					-
Means	{1900 + 48 130 + 5.8	54 6·2	53 6∙1	43 5·4	53 6∙1	47 5·7	47 5·7	40 5·2	54 6·2	42 5'4	46 5·6	47 5·7	56 g. cal./1000 6·3 kw/(10 m)²
1920	135.8	Ha	rqua F	Iala					1900 + 4			52	48
1921	135.7	64	49	44	48	54	35	39	37	43	44	58	48
1922	134.1	41	47	30	24	28	20	12	20	05	19	15	30
1923	134.0	26	17	18	17	23	18		-	25	33	26	25
1924	134.0	24	18	13	12	20	16	23	26	23	34	34	
Means	{1900+30 130+4·5	39 39	33 4·7	26 4·2	25 4·2	31 4·6	22 4.0	25 4·2	28 4.4	24 4· I	35 4·9	37 5.0	38 g. cal./1000 5·1 kw/(10 m) ²
1920	135.6	Μo	ntesu	na			1900 + 30 47				44	48	57
1921	135.7	55	56	49	44	43	39	47	35	53	46	50	52
1922	134.5	47	42	37	30	24	13	11	18	22	26	28	14
1923	134.0	30	12	12	I 2	16	18	26	31	34	30	31	23
1924	134.1	31	22	19	17	22	29	22	18	20	29	30	
Means	{1900 + 31 130 + 4.6	41 5:3	33 4.7	29 4.5	26 4·2	26 4·2	25 4·2	27 4:3	26 4·2	35 4·9	35 4.9	37 5:0	37 g. cal./1000 5.0 kw/(10 m)2

Thirdly, since there is at least some reason to consider that the intensity of solar radiation which reaches the earth is dependent upon the activity of the sun's surface as indicated by the spots to be noticed upon it, we give a table of mean annual frequency of sunspots during the past 185 years, estimated according to a regular plan devised at Zürich by Professor Wolf and now continued regularly by Professor Wolfer.

The mean period of frequency of spots is 11.1 years and anything with a period approximating to 11 years or a multiple or sub-multiple thereof, may suggest a connexion with sunspots. The most recent and most effective relation that has come to the knowledge of the Meteorological Office is the direct relation between the sunspotnumber and the variation of level of the water in Lake Victoria at Port Florence. The correlation in this case is +.8.

¹ Annals of the Astrophysical Observatory of the Smithsonian Institution, vol. IV, p. 193. Washington, 1922. The values at Hump Mountain are of inferior weight.
² Smithsonian Misc. Coll., vol. LXXVII, No. 3. Washington, 1925.

		SO	ME PI	RELIN	IINAF	RY FIG	GURE	S		7		
Table of sunspot-numbers1, 1750–1934.												
Years	0	I	2	3	4	5	6	7	8	9		
	n	n	n	n	n	n	n	n	n	n		
175-	83	48 86	48	31	12	10	10	32	48	54		
176-	63		61	45	36	21	ΙI	38	70	106		
177-	101	82	66	35	31	7	20	92	154	126		
178-	85	68	38	23	10	24	83	132	131	118		
179-	90	67	60	47	4 I	21	16	6	4	7		
180-	14	34	45	43	48	42	28	10	8	2		
181-	0	1	5	12	8	35	46	41	30	24		
182-	16	7 48	4 28	2	8	17	39	50	62	67		
183-	71	48	28	8	13	57	122	138	103	86		
184-	63	37	24	ΙI	15	40	62	98	124	96		
185-	66	65	54	39	21	7	4	23	55	94		
1X6-	96	77	59	44	47	30	16	7	37	74		
187-	139	111	102	66	45	17	ΙI	12	3	6		
188-	32	54	60	64	64	52	25	13	7	6		
189–	7	36	73	85	64 78	64	42	26	27	12		
190-	10	3	5	24	42	64	54	62	49	44		
191-	19	3 6	4	Ì	10	47	57	104	49 81	64		
192-	38	26	14	6	17	44	64	69	78	65		
193-	36	21	11	6	9	_						

TERRESTRIAL RADIATION

Finally, we quote in advance, as "Stefan's law," the formula for the heat emitted by radiation from a square centimetre of surface at temperature t in a perfectly transparent medium as σT^4 , where T is the absolute temperature for which the tercentesimal temperature tt can be substituted with sufficient accuracy for meteorological work. The symbol σ represents a "constant" independent of the temperature but dependent upon the nature of the surface. It is called Stefan's constant². "According to Professor Millikan, who has recently reviewed the literature of the subject, the most probable value of σ is 5.72×10^{-12} " watts per square centimetre.

Radiation from a square dekametre of black earth at various temperatures, computed according to the formula $\Sigma = \sigma t^4$.

$\sigma =$	5.72 × 10	o ⁻⁹ kw pe	er square	dekamet	re=82×	10 ⁻¹² g.	cal. per s	quare cn	n per mir	nute	
tt	0	I	2	3	4	5	6	7	8	9	
kilowatts per square dekametre											
26-	26.1	26.5	27.0	27.4	27.8	28.2	28.6	29.1	29.5	30.0	
27-	30.4	30.9	31.3	31.8	32.2	32.7	33.5	33.7	34.5	34.7	
28-	35.2	35.7	36.2	36.7	37.2	37.7	38.3	38.8	39.4	39.9	
29-	40.2	41.0	41.6	42.2	42.7	43.3	43.9	44.2	45.1	45.7	
30-	46.3	47.0	47.6	48.2	48.8	49.5	50.5	50.8	21.2	52.1	

It is almost needless here to say that no material medium is perfectly transparent, the atmosphere certainly not, and from that fact arises the necessity of considering in some detail the subject of radiation before we can bring it into the quantitative explanation of meteorological phenomena.

¹ Meteorological Glossary, p. 245, H.M.S.O. 1916. The table has been extended by the addition of data for the years 1915–34 published in the Astronomische Mitteilungen, Zürich.

² Meteorological Glossary, s.v. Radiation. A more recent value (National Research Council Washington) is 5.709 for absolute temperature, equivalent to 5.717 for tercentesimal.

8 I. THE INFLUENCE OF SUN AND SPACE

THE RELATION OF SOLAR AND TERRESTRIAL RADIATION

In the heading to this chapter we have given a short table in order to indicate a relation between the intensities of solar and terrestrial radiation. The figures are really hypothetical because they assume that the atmosphere which intervenes between the sun and earth and between the earth and free space is perfectly transparent both to the solar and terrestrial radiation. With that gratuitous assumption the table indicates the altitude at which the sun would have to be in order to compensate for the loss of heat by radiation from a horizontal surface of "black" earth. The final figure of the table indicates that a black surface at the temperature of about 402 tt would be in balance with a vertical sun.

We are bold enough to introduce this table with its assumption of a transparent atmosphere for the simple reason that it is precisely the part which the atmosphere plays in affecting the incoming and outgoing radiation which is a matter of chief interest for the science of meteorology.

Actual observations of the conditions of balance between incoming radiation and outgoing radiation must be included in the facts upon which any effective physical theory of atmospheric changes is to be built. In considering this subject, on account of the lack of perfect transparency of the atmosphere, we have to deal with radiation not only from the sun and the solid earth or the sea but also from the atmosphere itself which for this purpose is called "the sky." Not much progress has yet been made in the effective study of the relation of terrestrial radiation to the radiation from sun and sky. The subject is however coming gradually into our knowledge through the efforts of Anders Ångström, C. Dorno and W. H. Dines. During the years 1921 to 1927 the last-mentioned compared the loss of energy from a grass meadow with that received from the whole sky near the time of sunset. We quote a summary of some figures given by the author in a kalendar for 1925 based on the figures published in the *Meteorological Magazine*. They are arranged according to the quarters of the May-year (see pp. 4, 5).

Summary of inward long-wave radiation from the sky, and outward radiation from a grass field on cloudless days near sunset at Benson in 1924.

		Kilowatts per se	ays near sunset. quare dekametre Loss from field	Rothamsted	
First quarter	May 6 to Aug. 5	30	37	423	
Second quarter	Aug. 6 to Nov. 4	28	35	210	
Third quarter	Nov. 5 to Dec. 31 Jan. 1 to Feb. 4	24	31	57	
Fourth quarter	Feb. 5 to May 5	25	33	212	

It appears that whatever may be the time of the year, with clear sky about sunset, the earth is losing heat at the rate of 7 kilowatts per square dekametre.

Further details of the physical aspects of the behaviour of radiation are given in chapters IV and V of volume III.

CHAPTER II

LAND, WATER AND ICE. OROGRAPHIC FEATURES AND OTHER GEOPHYSICAL AGENCIES

Continental masses and unknown seas.

At this stage of our inquiry we have no wish to enter into details, our aim is to give a general idea of the structure and circulation, as accurate as circumstances permit, but always capable of improvement in detail. We conceive that, of the several schools of meteorology, each will have its own set of basic maps and diagrams corresponding with those in this volume but on a scale which is quite beyond the capacity of its modest page. The basic maps can be improved as detailed maps of the several countries and the several oceans are developed. They can be used as a kind of note-book into which new information can be incorporated from time to time by superposition.

Furthermore, for adequate conception of the actual behaviour of the atmosphere, the idea of circulation is fundamental, and circulation is related either to the earth's axis, which is permanent, and in that sense meteorologically normal, or to some local axis which is meteorologically speaking transitory. Every portion of an isobaric line on the earth's surface has what mathematicians call a centre of curvature, and air which moves along it has an "instantaneous axis of rotation." We have therefore chosen for the ground-plan of the great majority of our maps hemispheres in pairs, Northern and Southern. A simple geometrical representation of a hemisphere upon a plane surface by projection is an insoluble problem and the scheme which we have used cannot be said technically to be a projection, or even a map; it is a diagram or working picture, in which meridians are radii drawn through the poles, and lines of latitude are concentric circles at distances proportional to the co-latitude, that is, the angular distance from the pole. There is accordingly much exaggeration of the distance between the consecutive meridians at the equator compared with the polar regions, represented by a ratio of π : 2. Wind-directions, as represented on these charts, are not "true" in the sense that applies to winds on Mercator's projection, that is to say, an East wind is not always represented by a line drawn from right to left nor a West wind by a line from left to right; indeed the line for each wind has every direction

II. OROGRAPHIC FEATURES

in turn according to the position, on the map, of the point to which it refers; but, taken with due regard to the meridians which all pass through the pole of the chart, a true idea of convergence or divergence of direction is obtained which is more effective for many purposes than the idea that the directions of winds of the same name are everywhere parallel.

An obvious disadvantage of our charts is that the plan of computing the direction and velocity of the geostrophic wind from the separation of consecutive isobars with the aid of a common geostrophic scale is not applicable on account of the difference of scale along parallels from that along meridians. In the first edition of this volume we indicated a method of meeting that difficulty by means of scales which give separately the components of velocity along parallels of latitude and along meridians respectively.

But our maps are unsuitable for the study of the circulation in the equatorial regions, partly on account of the distortion and partly because of the separation at the equator. For subjects which are related especially to these regions we have accordingly used a special map drawn on Mercator's projection and extending from 30° N to 30° S of the equator. The division is appropriate for the region so specified because, as we shall see, the general idea of the normal atmospheric motion in the upper air near the equator is a circulation from East to West, whereas for middle latitudes the circulation is from West to East.

OROGRAPHIC FEATURES

We shall begin our representation of the atmospheric structure and circulation with maps of the main orographic features of the two hemispheres (figs. 2a and 2b) which are arranged to show: (1) the coast-lines together with the summer and winter boundaries of sea-ice in the two hemispheres, (2) the contour of 200 metres, and (3) the contour of 2000 metres. The contour of 200 metres is chosen because the orographic features below that level offer comparatively little obstruction to atmospheric currents and the contour may thus be regarded as a sort of secondary coast-line in considering such questions as the travel of cyclonic depressions, whatever may prove to be the final result of the analysis of the phenomena which are connoted by that term. The reader may be interested to notice that in this sense there is an atmospheric coast-line for North Western Europe which runs from the Pyrenees to the Ural Mountains and which circumscribes the great plain of Northern Europe enclosing the Baltic Sea and leaving the Scandinavian Peninsula as a huge island.

Even that line is broken through by a gap in Western Russia and by a large area between the Northern coast of Russia and the basins of the Caspian Sea and the Sea of Aral. There is also a large area under 200 metres in Siberia East of the Ural Mountains. Other notable areas under that level are marked by the valleys of the Nile, the Niger, the Indus, the Ganges, the Chinese rivers, the Mississippi and Hudson Bay in the Northern Hemisphere, by the