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The Manin-Mumford Conjecture, an elliptic
Curve, its Torsion Points & their Galois Orbits

P. Habegger

Abstract

This is an extended write-up of my five hour lecture course in July 2013
on applications of o-minimality to problems in Diophantine Geometry.
The course covered arithmetic properties of torsion points on elliptic
curves and how they combine with the Pila-Wilkie Point Counting Theo-
rem and the Ax-Lindemann-Weierstrass Theorem to prove a special case
of the Manin-Mumford Conjecture.

1 Overview

These notes are a write-up of my lecture course titled Diophantine Applications
which was part of the LMS-EPSRC Short Instructional Course – O-Minimality
and Diophantine Geometry in Manchester, July 2013. The purpose of the short
course was to present recent developments involving the interaction of methods
from Model Theory with problems in Number Theory, most notably the André-
Oort and Manin-Mumford Conjectures, to an audience of students in Model
Theory and Number Theory.

At the heart of this connection is the powerful Pila-Wilkie Counting Theo-
rem [26]. It gives upper bounds for the number of rational points on sets which
are definable in an o-minimal structure.

The Manin-Mumford Conjecture concerns the distribution of points of finite
order on an abelian variety with respect to the Zariski topology. We give a
rather general version of this conjecture, later on we often work in the situation
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2 P. Habegger

where the base field is Q, the algebraic closure of Q inside the field of complex
numbers C. But soon we concentrate on the power of an elliptic curve.

Theorem 1.1 (Raynaud [32]) Let A be an abelian variety defined over C. Let
X be an irreducible closed subvariety of A. We write

Ators = {P ∈ A(C); P has finite order}

for the group of all torsion points of A. Then X (C) ∩ Ators is Zariski dense in
X if and only if X is an irreducible component of an algebraic subgroup of A.

Any algebraic subgroup of A is a finite union of translates of an irreducible
algebraic subgroup by points of finite order. The theory of abelian varieties
guarantees that the torsion points lie Zariski dense on any algebraic subgroup.
Showing that torsion points do not lie Zariski dense on a subvariety that is not a
component of an algebraic subgroup is the difficult part of the Manin-Mumford
Conjecture.

Prior to Raynaud’s proof he was able to handle the case of a curve X [31].
Earlier partial results are due to Bogomolov [3, 4].

Lang [17] was interested in the analogous problem with A replaced by
(C×)n, where R× denotes the unit group of any ring R. Here the points of
finite order are those whose coordinates are roots of unity. In his paper, Lang
presents proofs of the Manin-Mumford Conjecture for (C×)2 attributed to
Ihara, Serre, and Tate independently. In a paper published in the same year,
Mann [20] treated hypersurfaces in any power of C×.

Later, Hindry [12] proved the generalization to all semi-abelian varieties
defined over C.

In the mean time new proofs of variants of the Manin-Mumford Conjecture
using various techniques have appeared in the literature: Hrushovski [16] used
the Model Theory of difference fields, Pink-Rössler [28, 29] used classical
Algebraic Geometry, and Ratazzi-Ullmo [30] used equidistribution.

Based on a strategy due to Zannier, he himself and Pila [27] used the afore-
mentioned counting theorem and lower bounds for the Galois orbit of torsion
points to give yet another proof of the Manin-Mumford Conjecture for abelian
varieties if the base field is Q. This general technique had broad implications
for open problems in diophantine geometry such as the André-Oort Conjec-
ture [25].

One aim of the short course was to present the ingredients required to prove
the Manin-Mumford Conjecture for an algebraic curve inside a product of
elliptic curves using the approach laid out in [27]:
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Elliptic Curves and Torsion 3

• The Pila-Wilkie Counting Theorem.

• An o-minimal approach to the Ax-Lindemann-Weierstrass Theorem which
is a special case of Schanuel’s Conjecture in functional setting.

• Bounding from below the size of a Galois orbit of point of finite order on an
elliptic curve.

This lecture concerns the last part. In Section 2.1 we will give a brief
introduction to the relevant parts of the theory of elliptic curves. In Section 2.2
we will see how to attach a function, definable in some o-minimal structure, to
the uniformizing map coming from the Weierstrass function. The uniformizing
map establishes the link between points of finite order on the elliptic curve and
rational points.

On the arithmetic side we will investigate the Galois orbit of a torsion point
in Section 3.

Suppose we are presented with an elliptic curve E defined by an equation
with coefficients in a number field K and a K-rational point T on E of finite
order n. In order to get the method running we require a lower bound

[K(T) : K] ≥ cnδ (1.1)

where c > 0 and δ > 0 are constants that are allowed to depend on E but not
on T . The left-hand side is precisely the size of the Galois orbit{

σ(T); σ ∈ Gal(K/K)
}

.

The crucial feature of (1.1) is the polynomial dependency in n. It is needed to
compete with the upper bound coming from the Pila-Wilkie Theorem, as we
will see in Section 4. In the multiplicative setting, the lower bound analogous
to (1.1) follows from the most basic facts on cyclotomic fields and Euler’s
totient function. For elliptic curves, one can quite easily prove a sub-polynomial
lower bound for [K(T) : K]. But breaking the polynomial barrier involves more
care than in the multiplicative case.

In Section 4 we combine our efforts and rely also on results presented in
Jonathan Pila’s, Martin Orr’s, and Alex Wilkie’s notes in this volume to give
a proof based on [27] of the Manin-Mumford Conjecture for curves in the
power Eg.

Theorem 1.2 Let E be an elliptic curve defined over a number field K con-
tained in C and suppose X ⊆ Eg is an irreducible algebraic curve also
defined over K. Then X (C) ∩ Eg

tors is infinite if and only if X is an irreducible
component of an algebraic subgroup of Eg.
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4 P. Habegger

In the appendix we give a proof of a special case of a theorem of Elkies for
local height functions on elliptic curves. This inequality leads to a polynomial
lower bound for the Galois orbit of a torsion point on an elliptic curve.

Most of the material presented in these lecture notes is classical. No empha-
sis was made to formulate things in their proper generality; the presentation
was chosen to give a pragmatic introduction to the tools required to prove
Theorem 1.2. Two excellent starting points for a more detailed overview of
the theory of elliptic curves from the arithmetic point of view (and beyond)
are books of Silverman [36] and Cassels [7]. For the theory of heights, which
also plays an important role in this course, we refer to books of Bombieri and
Gubler [5] or Hindry and Silverman [14].

2 Elliptic Curves

2.1 The Group Law and Points of Finite Order

Let K be a subfield of C. An elliptic curve E defined over K is a smooth,
projective curve of genus 1 with a prescribed K-rational point P0. In this
situation E can be represented by a Weierstrass equation

y2 = 4x3 − g2x − g3 (1.2)

where g2, g3 ∈ K satisfy g3
2 − 27g2

3 �= 0. This condition guarantees that we
obtain a smooth curve.

Certainly, (1.2) defines an affine curve, whereas the elliptic curve E is pro-
jective by definition. It is silently understood that E is isomorphic to the pro-
jective curve in P2 cut out by the homogenized equation

y2z = 4x3 − g2xz2 − g3z3.

The K-rational point P0 then corresponds to [0 : 1 : 0]. It is the only point
missing from the affine curve defined by (1.2).

The Weierstrass equation is by no means uniquely determined by (E, P0).
Indeed, any u ∈ K× can be used to make a change of coordinates

(x′, y′) = (u2x, u3y)

and obtain a new Weierstrass equation

y′2 = 4x′3 − g′
2x′ − g′

3 with g′
2 = u4g2 and g′

3 = u6g3

for E.
One of the most basic, but important, facts is that the points of E carry the

structure of an abelian group with neutral element P0. There are several ways to
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Elliptic Curves and Torsion 5

(A) Summing two distinct points (B) Doubling a point

Figure 1.1 The chord and tangent construction for y2 = 4x3 − x

define the group law. Possibly the most straightforward method is via the well
known chord and tangent construction which has a very geometric flavor. The
procedure is illustrated in Figure 1.1. Given two distinct points on the affine
portion of E we connect them by a line. This line intersects the elliptic curve
in a third point which, after changing the sign of the y-coordinate, is the sum
of the original points, cf. 1.1A. If the original points differ in the y-coordinate
only, then their sum is the neutral element. We extend this to a binary operation
on all points of E by treating P0 as the neutral element in a group law. Adding
a point on the affine part to itself requires some more care; now we intersect
the tangent of E at this point to get a third point. The duplicate of the original
point is obtained by again flipping the sign of the y-coordinate, cf. 1.1B. Of
course, we define the duplication of P0 to be again P0.

The binary operation described above is given by rational functions with
coefficients in K. With the exception of the law of associativity it is easy to see
that this binary operation defines an abelian group law on the K-rational points
of E with neutral element P0; see Chapter III.2 [36] for explicit formulas. At
least in principle it should be possible to verify associativity by an elaborate
computation. On the other hand, there are approaches using the Riemann-
Roch Theorem (Proposition 3.4 in Chapter III [36]) and a geometric one in
Chapter 7 [7].
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6 P. Habegger

To simplify notation we write 0 for the neutral element P0 and use + to
denote the group law. For each n ∈ Z we have the multiplication-by-n map

[n] : E(K) → E(K).

It is a non-constant morphism [n] : E → E of algebraic curves. So [n] can be
represented by rational functions with coefficients in K.

Example 1.3 Let us see how things look for n = 2. If (x, y) ∈ E(C) � {0}
and y �= 0, then

[2](x, y) =
⎛⎝x4 + g2

2 x2 + 2g3x + g2
2

16

4x3 − g2x − g3
,

2x6 − 5g2
2 x4 − 10g3x3 − 5

8 g2
2x2 − g2g3

2 x + g3
2

32 − g2
3

y3

⎞⎠ , (1.3)

which is well defined as 4x3 − g2x − g3 = y2 �= 0. Roots of the cubic 4x3 −
g2x − g3 are precisely the x-coordinates of the points in E(C) of order 2.

Definition 1.4 The group of torsion points of E is

Etors = {T ∈ E(C); there exists an integer n ≥ 1 with [n](T) = 0}.
If n ∈ N = {1, 2, 3, . . .} we write

E[n] = {T ∈ Etors; [n](T) = 0}
for the group of points of finite order dividing n.

The structure of Etors and E[n] as abelian groups is well known. We will
uncover both in the next section using the Weierstrass function.

Torsion points of E are algebraic over K, i.e.

Etors = {T ∈ E(K); T ∈ Etors}
where K is the algebraic closure of K in C. We reproduce this well known proof
here. It involves the action of Aut(C/K), the field automorphisms of C that fix
elements of K, a central concept for our arguments later on. If P ∈ E(C), then

P 
→ σ(P)

defines an automorphism of E(C) as an abelian group; here σ acts on the
coordinates of P if P �= 0 and σ(0) = 0. Recall that [n] is represented by
rational functions with coefficients in K and so

σ([n](P)) = [n](σ (P)).
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Elliptic Curves and Torsion 7

Say T has finite order n ≥ 1, then so does σ(T). In particular, the orbit

{σ(T); σ ∈ Aut(C/K)} (1.4)

is contained in a fiber of [n]. As [n] is a non-constant morphism, all these fibers
are finite and in particular E[n] is finite. Thus (1.4) is finite. In particular, T
cannot have a coordinate that is transcendental over K. This yields T ∈ E(K),
as desired. So already the Galois group Gal(K/K) acts on E[n] and Etors.

It is not difficult to adapt the argument above to use only the duplication
morphism [2], which we described explicitly in Example 1.3, and its iterates
[2n]. Indeed, by the Pigeonhole Principle T ∈ E(C) is torsion if and only if
[2n](T) = [2m](T) for integers 0 ≤ n < m.

2.2 Uniformizing the complex points E

Here we describe an elliptic curve E from the analytic point of view. In the
end it is the interplay between the algebraic and the analytic world that makes
the strategy described in Section 1 feasible. Our goal is to attach a definable
function to the inverse of the uniformizing map determined by a Weierstrass
equation.

Suppose E is presented by the Weierstrass equation (1.2) with g2, g3 ∈ C.
There is a unique discrete, rank 2 subgroup � ⊆ C, called the periods of E,
with the following properties.

• The series

℘(z) = 1

z2
+

∑
ω∈��{0}

1

(z − ω)2
− 1

ω2

determines a meromorphic, �-periodic function with poles of order 2 at
points of � and no poles in C � �. It is called the Weierstrass function
attached to (1.2). Moreover, this function satisfies the differential equation

℘′2 = 4℘3 − g2℘ − g3

and induces a surjective, analytic homomorphism of groups u : C → E(C)

defined by

u : z 
→
{ [℘(z) : ℘′(z) : 1] : if z ∈ C � �,

[0 : 1 : 0] : if z ∈ �

with kernel �.
• The coefficients in (1.2) are related to the periods by

g2 = 60
∑

ω∈��{0}

1

ω4 and g3 = 140
∑

ω∈��{0}

1

ω6 .
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8 P. Habegger

The existence of � follows from the theory of modular functions, see for
example Proposition 5, Chapter VII [34]. Weierstrass functions are studied in
Chapter VI [36].

Let us fix a Z-basis (ω1, ω2) of the periods �. We can think of u(ν1ω1 +
ν2ω2) as a function in the real coordinates ν1 and ν2. In these coordinates, the
period lattice � becomes Z2. So u induces a surjective group homomorphism
R2 → E(C) with kernel Z2. Apart from the integral points Z2 this homomor-
phism takes values in the affine part of E, i.e. the solutions in C2 of (1.2). The
preimage of Etors is precisely Q2 and we get isomorphisms of groups

Etors ∼= (Q/Z)2 and E[n] ∼= (Z/nZ)2 (1.5)

for all n ∈ N.
Our goal is to uniformize the affine part of E by a function that is definable

in the o-minimal structure Ran, the o-minimal structure generated by restricted
real analytic functions. A reasonable candidate is

[−1/2, 1/2]2 � {(0, 0)} → C2 = R4 (1.6)

(ν1, ν2) 
→ (℘ (ν1ω1 + ν2ω2), ℘′(ν1ω1 + ν2ω2))

where we identify the target C2 with R4 by taking real and imaginary parts on
both factors of C2.

However, we must take some care, as (1.6) does not extend to a real analytic
function on an open neighborhood of the compact set [−1/2, 1/2]2 due to the
pole at (0, 0) This issue is not too severe. We must merely remind ourselves
that the Weierstrass function ℘ has a double pole at z = 0 and hence ℘′ has
a triple pole there. In a sufficiently small neighborhood (−ε, ε)2 of (0, 0) the
mapping (ν1, ν2) 
→ ℘′(ν1ω1 + ν2ω2) does not vanish and

(ν1, ν2) 
→
(

℘(ν1ω1 + ν2ω2)

℘′(ν1ω1 + ν2ω2)
,

1

℘′(ν1ω1 + ν2ω2)

)
∈ C2 (1.7)

is real analytic on (−ε, ε)2 if we send (0, 0) to 0. The mapping (1.7) composed
with

(z, w) 
→
{

(zw−1, w−1) : if w �= 0,
(0, 0) : otherwise

(1.8)

coincides outside of (0, 0) with (1.6). Now (1.8) is semi-algebraic and therefore
definable in Ran. As the composite of two definable functions is again definable
we find that (1.6) is definable in Ran when restricted to (−ε, ε)2 � {(0, 0)}.

Now that we have handled the singularity at the origin, definability of
(1.6) in Ran is straightforward. Indeed, its restriction to the compact set
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Elliptic Curves and Torsion 9

[−1/2, 1/2]2 � (−ε, ε)2 clearly extends to a real analytic map on some larger
open set; take for example [−3/4, 3/4]2 � [−ε/2, ε/2]2.

For technical reasons, i.e. to achieve injectivity, it is convenient to restrict
(1.6) further to (−1/2, 1/2]2 � {(0, 0)}. This does not affect the definability
property we just proved. We thus obtain a bijection

(−1/2, 1/2]2 � {(0, 0)} → {(x, y) ∈ C2; y2 = 4x3 − g2x − g3}
= E(C) � {0}

which is definable in Ran. We will work with the inverse map

ξ : E(C) � {0} → (−1/2, 1/2]2, (1.9)

which is also definable in Ran.
As we started out with a group homomorphism we find ξ(Etors � {0}) ⊆ Q2.

More precisely, if n ∈ N and T ∈ Etors � {0} has order dividing n, then ξ(T) ∈
1
n Z2.

This concludes our discussion on definability properties of a single Weier-
strass function. Peterzil and Starchenko [24] studied the definability question
for a family of Weierstrass functions. In this generality one needs the larger
o-minimal structure Ran,exp generated by Ran and the exponential function on
the reals.

3 Galois Orbits of Torsion Points and Heights

3.1 The Arithmetic of Torsion Points

In this section we discuss Galois theoretic properties of torsion points on an
elliptic curve E. As usual, we assume that E is presented by a Weierstrass
equation (1.2) with coefficients g2, g3 in a field K ⊆ C. Now we will assume
in addition that K is a number field.

Roughly speaking, torsion points of E share many arithmetic properties with
the roots of unity

μ = {ζ ∈ C×; there is n ∈ N with ζ n = 1}.
Let us also write

μ[n] = {ζ ∈ μ; ζ n = 1}
for all n ∈ N.

In the table below we list some similarities between roots of unity and the
torsion points of the elliptic curve E. We retain notation from Section 2.2 and
use ϕ to denote Euler’s totient function.
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10 P. Habegger

Roots of unity Torsion on E

Analytic u(ν1ω1 + ν2ω)

description e2π
√−1ν with ν ∈ Q with ν1,2 ∈ Q

Group structure μ ∼= Q/Z Etors ∼= (Q/Z)2

μ[n] ∼= Z/nZ E[n] ∼= (Z/nZ)2

Order vs. degree If ord(ζ ) = n, then If ord(T) = n, then

[Q(ζ ) : Q] = ϕ(n) ≥ c n
log log 3n [K(T) : K] ≤ n2

Field properties Q(μ[n])/Q Galois with group K(E[n])/K Galois with

(Z/nZ)× = GL1(Z/nZ) group isomorphic to a

subgroup of GL2(Z/nZ)

We now justify the entries in this table. The middle column is classical
algebra. The inequality

ϕ(n) ≥ c
n

log log 3n
(1.10)

holds for all n ≥ 1 where c > 0 is an absolute constant by Theorem 328 [10].
Any ζ of order n generates μ[n]. So if σ ∈ Gal(Q(ζ )/Q) then

σ(ζ ) = ζ a

for some exponent a ∈ Z that is uniquely determined modulo n. As σ is
invertible, a must be coprime to n. We obtain a representation

χn : Gal(Q(μ[n])/Q) → (Z/nZ)× = GL1(Z/nZ)

determined by

σ(ζ ) = ζχn(σ ).

The representation χn is independent of the choice of the generator ζ of μ[n].
The analytic and group theoretic properties of the right column were

discussed in Section 2.2 around (1.5). The upper bound for [K(T) : K] follows
as Gal(K/K) acts on the points of finite order n, of which there are at most n2.
However, if we return for a moment to the larger picture we require lower
bounds for the Galois orbit of a torsion point to compete with the upper bound
from the Pila-Wilkie Theorem. The easily obtainable upper bound in the table
is in the wrong direction.
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