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Origins

To motivate our study of reversibility, we describe how the concept originates
in dynamical systems, finite group theory, and in a subject known as hidden
dynamics. Full details of these topics are beyond the scope of this book, and
none of the material in this chapter is needed later on.

1.1 Origins in dynamical systems

Here we discuss several examples of reversibility in the study of conservative
dynamical systems.

1.1.1 The harmonic oscillator

The simple pendulum is approximately modelled by the harmonic oscillator:
the system in which a particle on the real line R is attracted to the origin by
a force directly proportional to its distance from the origin. This system also
models a weight suspended from a spring, oscillating about its equilibrium
position (in which case the relationship between the force and distance is given
by Hooke’s law). Newton’s second law states that the rate of change of the
momentum of a body is equal to the force applied to it. Momentum is mass
times velocity, so this gives the differential equations

d p
dt

= −κq,

dq
dt

=
p
m
,

(1.1)

where q represents the position of the particle, p its momentum (both p and q
are functions of time t), κ is the constant of proportionality between the force
and the distance to the origin, and m is the particle’s mass.
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2 Origins

It follows at once that the quantity

H(q, p) =
p2

2m
+
κq2

2
,

called its Hamiltonian (which is, physically, the energy of the system, given
by the sum of its kinetic and potential energy), has derivative zero with respect
to time, and hence is constant along trajectories. It follows that the trajectories
are the concentric ellipses H(q, p) = E, for constant E � 0.

Consider the map τ : R2 → R2 defined by τ(q, p) = (q,−p). Evidently,
τ ◦ τ = 1, the identity map. A simple calculation establishes the following re-
sult.

Lemma 1.1 If (q(t), p(t)) is a solution of the differential equations (1.1),
then so is τ(q(−t), p(−t)).

This lemma is usually expressed as saying that τ is a time-reversal symmetry
of the system.

Figure 1.1 Time-reversal symmetry of the harmonic oscillator

Let t �→ (q(t), p(t)) represent the solution of (1.1) subject to the initial con-
ditions (q(0), p(0)) = (q0, p0), where (q0, p0) is some pair in R2. We define
φ : R2 → R2 to be the time-one step of the system, given by φ(q0, p0) =

(q(1), p(1)). Then

φ ◦ τ ◦φ ◦ τ = 1,

or

τ ◦φ ◦ τ = φ−1, (1.2)
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1.1 Origins in dynamical systems 3

the inverse map of φ (see Figure 1.1).

1.1.2 The n-body problem

The above behaviour is not particular to the harmonic oscillator. We can make
similar observations whenever the Hamiltonian H(q, p) of a dynamical system
is quadratic in the momentum variable p.

Figure 1.2 The n-body problem

Consider, for instance, the problem of n point bodies moving under their mu-
tual gravitational attraction, illustrated in Figure 1.2. If we denote the masses
by mi and the positions by xi : R→ R3 (i = 1, . . . ,n), then in Newtonian form
the equations of motion are

d
dt

(
mi

dxi

dt

)
=

n

∑
r=1
r �=i

Gmimr

|xr − xi|2
(

xr − xi

|xr − xi|

)
,

where G is the gravitational constant. Let xi = (xi1,xi2,xi3) for i = 1, . . . ,n and,
for j = 1,2,3, let

μ3i−3+ j = mi, q3i−3+ j = xi j, p3i−3+ j = mi
dxi j

dt
.

We also define

K(p) =
3n

∑
r=1

p2
r

2μr
, V (q) =−1

2

n

∑
r,s=1
r �=s

Gmrms

|xr − xs|
,

H(q, p) = K(p)+V (q),
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4 Origins

where p = (p1, . . . , p3n) and q = (q1, . . . ,q3n). Then the equations of motion
become

dqk

dt
=
∂H
∂ pk

,

d pk

dt
=− ∂H

∂qk
,

for k = 1, . . . ,3n. We have, as before, that H(q,−p) = H(q, p), and that if
(q(t), p(t)) is a solution, then so is (q(−t),−p(−t)).

This system has singularities when n > 1, some corresponding to collisions,
and, for n � 4, some corresponding to other singularities [248]. Let us consider
not the full phase space R3n ×R3n, but the subset X obtained by removing all
orbits that end in a singularity, and all orbits that when run backwards end in
a singularity. (By running an orbit (q(t), p(t)) backwards, we mean taking the
orbit (q(−t),−p(−t)).) We remark that X is nonempty, but its structure is not
fully understood to date [84].

Again, we can define τ(q, p) = (q,−p) and φ : X → X to be the time-one
step of the system, so that (1.2) holds.

1.1.3 Billiards

Consider billiards on an arbitrary smoothly-bounded, strictly-convex table with-
out pockets. Let Γ denote the boundary. We ignore the motion in which the ball

Figure 1.3 Trajectory of a billiard ball

rolls around the cushion, considering only trajectories in which it bounces to
and fro. We assume that it moves in a straight line between bounces, and that at
each bounce the line of incidence and the line of departure make equal angles
with the normal to the boundary at the point of impact.
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1.2 Origins in finite group theory 5

We may parametrise the set of states at which the ball leaves the cushion
by two parameters q and θ , where q is the point in Γ at which the ball leaves,
and θ is the angle between the line it departs on and the tangent to Γ, in the
counterclockwise direction (as shown in Figure 1.3). Thus the state space is
X = Γ×(0,π), and the dynamical step φ : X → X is the map that takes (q0,θ0)

to (q1,θ1), where (q1,θ1) parametrises the state that results one bounce after
the state parametrised by (q0,θ0).

If we denote by τ the bijection of X defined by τ(q,θ) = (q,π−θ), which
reverses the direction of travel, then we have τ ◦ τ = 1, and

(φ ◦τ ◦φ)(q0,θ0) = (φ ◦τ)(q1,θ1) = φ(q1,π−θ1) = (q0,π−θ0) = τ(q0,θ0)

so that, again, equation (1.2) holds.
Henceforth we omit the symbol ◦ from equations such as τ ◦ φ ◦ τ = φ−1,

unless the omission is likely to cause confusion.

1.1.4 Significance of the equation τφτ = φ−1

Equation (1.2) says that the dynamical step φ is conjugate to its own inverse
by the involutive map τ . Birkhoff was probably the first to point out the signifi-
cance of this equation for a dynamical system [31, page 311]. It implies that the
dynamics of the system are essentially the same as the dynamics of the inverse
system. This has strong consequences. For instance, if a periodic point is fixed
by the involution, then it cannot be attracting. Billiards always has periodic
points of all orders [31, page 328ff]. This is a consequence of the famous Last
Geometric Theorem of Poincaré, conjectured by Poincaré and proven eventu-
ally by Birkhoff. Period-two points correspond to orbits that bounce back and
forth between two boundary points, and obviously each of the two states is
fixed by the map τ that reverses the direction of travel. Thus these orbits are
necessarily neither attracting nor repelling.

As we shall see in Chapter 3, the very same equation comes up when one
considers the symmetry group of a regular polygon, a dihedral group, and we
shall meet the equation later in many other situations in geometry, algebra, and
analysis.

1.2 Origins in finite group theory

Reversibility is significant in the theory of finite groups because of its connec-
tions with representation theory. The next theorem, which is proven in Chap-
ter 3, is the primordial result about reversibility in finite group theory.
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6 Origins

Theorem 1.2 An element g of a finite group G is conjugate to g−1 if and only
if χ(g) is real for each complex character χ of G.

All the representations we consider in this section are complex representa-
tions.

It is because of this theorem that elements of finite groups that are conjugate
to their own inverses are called real elements. However, we prefer to use the
term reversible instead of real because most of the groups we consider later
are infinite groups, for which there is no such characterisation of reversible
elements using real characters.

In Chapter 3 we also prove that the number of conjugacy classes of re-
versible elements in a finite group is equal to the number of real-valued ir-
reducible characters.

Theorem 1.2 tells us that we can identify the reversible elements of a finite
group by studying the group’s character table. We can obtain another result of
the same type, using a similar (if slightly harder) proof.

Theorem 1.3 An element g of a finite group G is conjugate to gm for each
integer m coprime to |G| if and only if χ(g) is rational for each character χ
of G.

Theorems 1.2 and 1.3 indicate that the structure of a finite group is closely
related to the values taken by the group’s characters. To investigate this rela-
tionship more thoroughly, group theorists use the Schur index of a character,
which we describe briefly.

Let χ be an irreducible complex character of G. Given a subfield k of C, we
say that χ can be realised over k if there is an irreducible representation φ that
has character χ such that the matrix entries of φ(g) lie in k, for every element
g of G. Given a field F such that Q ⊂ F ⊂ C, we define F(χ) be the smallest
subfield of C that contains F and all the values χ(g), for g ∈ G. The Schur
index of χ over F , denoted mF(χ), is the smallest degree of an extension of
F(χ) over which χ can be realised. If F = R, then we call mR(χ) the Schur
index of χ .

The only possible values of mR(χ) are 1 and 2 because the only algebraic
extensions of R are R and C. The next theorem, the Brauer–Speiser theorem
[85], invests this trivial observation with a great deal of value.

Theorem 1.4 If χ is a real-valued irreducible character of a finite group G,
then mQ(χ) is either 1 or 2.

In particular, if mR(χ) is 2, then because Q(χ)⊂R(χ) it follows that mQ(χ)
is also 2.
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1.2 Origins in finite group theory 7

An important tool for calculating mR(χ) is the Frobenius–Schur indicator
ν2(χ), which is defined by

ν2(χ) =
1
|G| ∑g∈G

χ(g2).

The connection between the Frobenius–Schur indicator and the Schur index is
explained by the following result [138, page 58].

Theorem 1.5 Given an irreducible character χ , the Frobenius–Schur indi-
cator ν2(χ) is either 0, 1 or 2. Furthermore,

ν2(χ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if χ is not real-valued,

1, if χ is realised over R,

−1, if χ is real-valued, but cannot be realised over R.

Clearly, if ν2(χ) is 0 or 1, then mR(χ)= 1, and if ν2(χ)=−1, then mR(χ)=
2.

Theorem 1.5 has an important application in counting square roots of ele-
ments. It is proven in [138, page 49] and [140, Corollary 23.17] that the number
of square roots in G of an element g is given by

∑ν2(χ)χ(g),

where the sum is taken over all irreducible characters of G. This formula can be
used to help prove the Brauer–Fowler theorem about centralisers of involutions
in finite simple groups (see [140, Chapter 23]), which is a pivotal result in the
classification of the finite simple groups.

The standard proof of Theorem 1.5 throws up an interesting subsidiary result
[138, Theorem 4.14] (in which we denote the transpose of a matrix A by At ).

Theorem 1.6 Suppose that φ is an irreducible representation with a real-
valued character χ . Then there exists a nonzero square matrix M such that

φ(g)tMφ(g) = M

for all elements g of G. Furthermore, for any such matrix M, we have Mt =

ν2(χ)M.

It follows from Theorem 1.6 that the image of the representation φ : G →
GL(V ) lies inside the isometry group of the bilinear form

β : V ×V → C, (u,v) �→ utMv.
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8 Origins

If ν2(χ) = 1, then Mt = M, and β is a symmetric bilinear form; in this case φ
is called an orthogonal representation. If ν2(χ) = −1, then Mt = −M, and β
is a skew-symmetric bilinear form; in this case φ is called a symplectic repre-
sentation.

It is helpful to summarise parts of Theorems 1.5 and 1.6 in the following
corollary.

Corollary 1.7 Let χ be an irreducible character. The following are equiva-
lent:

(i) mR(χ) = 2
(ii) ν2(χ) =−1

(iii) χ is real-valued and is realised by a symplectic representation.

Brauer [36, Problem 14] asked for a group theoretic description of the num-
ber of irreducible characters of a finite group with Schur index 1. This ques-
tion has been answered by Gow [119] when the Sylow 2-subgroups of G are
nontrivial and cyclic, and Gow’s answer is given in terms of the number of
reversible conjugacy classes of G.

A slightly easier question than Brauer’s asks for a characterisation of those
groups G such that all real-valued irreducible characters χ have Schur index 1.
A partial answer to this was given by Gow in [119, Corollary 1]. To state Gow’s
result, we recall that a reversible element of a group is strongly reversible if it
is conjugate to its inverse by an involution.

Theorem 1.8 Let G be a finite group whose Sylow 2-subgroup is abelian.
Then all real-valued irreducible characters χ of G have Schur index 1 if and
only if all reversible elements of G are strongly reversible.

See [118, 120] for related work of Gow.
Gow notes that often (but not always) the existence of real-valued irre-

ducible characters with Schur index 2 is accompanied by the existence of re-
versible elements that are not strongly reversible. A conjecture in [146], which
the authors of [146] attribute to Tiep, makes this more precise. To understand
the conjecture, remember that the Schur index mR(χ) = 1 if and only if the
Frobenius–Schur indicator ν2(χ) is 0 or 1. Finite groups for which all irre-
ducible characters χ satisfy ν2(χ) = 1 are called totally orthogonal because,
as we have seen, all their representations are orthogonal.

Conjecture 1.9 A finite simple group is totally orthogonal if and only if all
its elements are strongly reversible.

It is therefore of interest to determine all those finite simple groups whose
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1.3 Origins in hidden dynamics 9

elements are all strongly reversible. This very question appeared in the famous
Kourovka notebook [178], as Problem 14.82, posed by Sozutov (but described
as a “well-known problem”). In 2005, Tiep and Zalesski [231] classified all the
simple (and quasi-simple) finite groups in which all elements are reversible.
Results of [22, 81, 93, 121, 122, 153, 154, 202, 233] imply that each of these
finite simple groups that consists entirely of reversible elements in fact consists
entirely of strongly-reversible elements (therefore Problem 14.82 is solved).
To prove Tiep’s conjecture, then, one must calculate ν2(χ) for all irreducible
characters χ of each of the finite simple groups.

Recently, Kaur and Kulsherstha [146] have shown that the conjecture is
false if the finite groups are no longer required to be simple. They construct in-
finite families of special 2-groups that are totally orthogonal but do not consist
entirely of strongly-reversible elements, and they also construct infinite fami-
lies of special 2-groups that consist entirely of strongly-reversible elements but
are not totally orthogonal.

1.3 Origins in hidden dynamics

To further motivate our formal study of reversibility, we briefly describe some
examples in which the dynamics of a reversible map play a key role in re-
solving a problem with no apparent dynamic connection; this phenomenon is
known as hidden dynamics. Our first example is elementary, our second ex-
ample is from complex analysis, and our third example is from approximation
theory.

1.3.1 Small fibres

A map f : X → Y is said to have small fibres if f−1( f (x)) has cardinality at
most two, for each x in X . Whenever f has small fibres, we may define an
associated involution τ : X → X by requiring that

f−1( f (x)) = {x,τ(x)}, for x in X .

In other words, τ swaps the preimages of each point, if there are two, and fixes
the preimage, if there is only one.

Many interesting involutions arise in this way. (In fact, all involutions arise
in this way: given an involution τ on a set X , we may define Y as the space of
orbits of τ and f : X →Y as the quotient map.) For example, the quadratic map

f : C→ C, z �→ z2 +bz,
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10 Origins

induces the involution z �→ −z−b. The cubic map

f : C→ C, z �→ z3 + z2,

has three preimages for most points, but if restricted to a small enough neigh-
bourhood of the origin, it has at most two-point fibres, and the induced involu-
tion τ is actually holomorphic on a neighbourhood of 0, with

τ(z) =−z− z2 + · · · .

It may happen that a problem leads us to two maps f1 : X → Y1 and f2 :
X → Y2, each having small fibres. From the induced involutions τ1 and τ2 we
can define φ = τ1τ2, a reversible bijective map of X . This scenario arises in a
significant number of cases, and often the dynamics of φ prove useful.

1.3.2 Two-valued reflections

Webster [240, 241, 242] exploited the small fibres idea in connection with
the concept of two-valued reflections. Two-valued reflections occur when the
familiar local antiholomorphic reflection across a real-analytic curve γ on a
Riemann surface Σ happens to have precisely two global extensions. This hap-
pens, for instance, for reflection across an ellipse in the sphere, and also for
certain particular quartic lemniscates.

The abstract situation involves a compact Riemann surface Γ̂ (related to the
complexification Γ of γ) and maps π1, π2, ρ , and ρ ′, where π1 and π2 are
each two-fold branched covers of Σ, ρ is an antiholomorphic involution of Γ̂,
and ρ ′ is an antiholomorphic involution of Σ, such that the following diagram
commutes.

Γ̂
ρ ��

π1

��

Γ̂

π2

��
Σ

ρ ′
�� Σ

When Σ is the Riemann sphere Ĉ, it turns out that the existence of both π1 and
π2 implies (by the Riemann–Roch theorem) that Γ̂ is the Riemann sphere or
a torus. Webster considered these cases, and discovered which Γ correspond
to various curves, by an argument that produced explicit parametrisations of Γ
and formulas for the reflections. The point is that these formulas are found by
a natural process of discovery; we do not need a stroke of genius to find them;
nothing has to be pulled out of the air.
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