Electricity and Magnetism for Mathematicians

This text is an introduction to some of the mathematical wonders of Maxwell’s equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell’s equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell’s equations is endless.

The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell’s equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature.

THOMAS A. GARRITY is the William R. Kenan, Jr. Professor of Mathematics at Williams, where he was the director of the Williams Project for Effective Teaching for many years. In addition to a number of research papers, he has authored or coauthored two other books, All the Mathematics You Missed [But Need to Know for Graduate School] and Algebraic Geometry: A Problem Solving Approach. Among his awards and honors is the MAA Deborah and Franklin Tepper Haimo Award for outstanding college or university teaching.
ELECTRICITY AND MAGNETISM
FOR MATHEMATICIANS
A Guided Path from Maxwell’s Equations to Yang-Mills

THOMAS A. GARRITY
Williams College, Williamstown, Massachusetts
with illustrations by Nicholas Neumann-Chun
Contents

List of Symbols xi
Acknowledgments xiii

1 A Brief History 1
 1.1 Pre-1820: The Two Subjects of Electricity and Magnetism 1
 1.2 1820–1861: The Experimental Glory Days of Electricity and Magnetism 2
 1.3 Maxwell and His Four Equations 2
 1.4 Einstein and the Special Theory of Relativity 2
 1.5 Quantum Mechanics and Photons 3
 1.6 Gauge Theories for Physicists: The Standard Model 4
 1.7 Four-Manifolds 5
 1.8 This Book 7
 1.9 Some Sources 7

2 Maxwell’s Equations 9
 2.1 A Statement of Maxwell’s Equations 9
 2.2 Other Versions of Maxwell’s Equations 12
 2.2.1 Some Background in Nabla 12
 2.2.2 Nabla and Maxwell 14
 2.3 Exercises 14

3 Electromagnetic Waves 17
 3.1 The Wave Equation 17
 3.2 Electromagnetic Waves 20
 3.3 The Speed of Electromagnetic Waves Is Constant 21
 3.3.1 Intuitive Meaning 21
Contents

3.3.2 Changing Coordinates for the Wave Equation 22
3.4 Exercises 25

4 Special Relativity 27
 4.1 Special Theory of Relativity 27
 4.2 Clocks and Rulers 28
 4.3 Galilean Transformations 31
 4.4 Lorentz Transformations 32
 4.4.1 A Heuristic Approach 32
 4.4.2 Lorentz Contractions and Time Dilations 35
 4.4.3 Proper Time 36
 4.4.4 The Special Relativity Invariant 37
 4.4.5 Lorentz Transformations, the Minkowski Metric, and Relativistic Displacement 38
 4.5 Velocity and Lorentz Transformations 43
 4.6 Acceleration and Lorentz Transformations 45
 4.7 Relativistic Momentum 46
 4.8 Appendix: Relativistic Mass 48
 4.8.1 Mass and Lorentz Transformations 48
 4.8.2 More General Changes in Mass 51
 4.9 Exercises 52

5 Mechanics and Maxwell’s Equations 56
 5.1 Newton’s Three Laws 56
 5.2 Forces for Electricity and Magnetism 58
 5.2.1 \(F = q(E + v \times B) \) 58
 5.2.2 Coulomb’s Law 59
 5.3 Force and Special Relativity 60
 5.3.1 The Special Relativistic Force 60
 5.3.2 Force and Lorentz Transformations 61
 5.4 Coulomb + Special Relativity + Charge Conservation = Magnetism 62
 5.5 Exercises 65

6 Mechanics, Lagrangians, and the Calculus of Variations 70
 6.1 Overview of Lagrangians and Mechanics 70
 6.2 Calculus of Variations 71
 6.2.1 Basic Framework 71
 6.2.2 Euler-Lagrange Equations 73
 6.2.3 More Generalized Calculus of Variations Problems 77
 6.3 A Lagrangian Approach to Newtonian Mechanics 78
Contents

6.4 Conservation of Energy from Lagrangians 83
6.5 Noether’s Theorem and Conservation Laws 85
6.6 Exercises 86

7 Potentials 88
7.1 Using Potentials to Create Solutions for Maxwell’s Equations 88
7.2 Existence of Potentials 89
7.3 Ambiguity in the Potential 91
7.4 Appendix: Some Vector Calculus 91
7.5 Exercises 95

8 Lagrangians and Electromagnetic Forces 98
8.1 Desired Properties for the Electromagnetic Lagrangian 98
8.2 The Electromagnetic Lagrangian 99
8.3 Exercises 101

9 Differential Forms 103
9.1 The Vector Spaces $\Lambda^k(\mathbb{R}^n)$ 103
 9.1.1 A First Pass at the Definition 103
 9.1.2 Functions as Coefficients 106
 9.1.3 The Exterior Derivative 106
9.2 Tools for Measuring 109
 9.2.1 Curves in \mathbb{R}^3 109
 9.2.2 Surfaces in \mathbb{R}^3 111
 9.2.3 k-manifolds in \mathbb{R}^n 113
9.3 Exercises 115

10 The Hodge \star Operator 119
10.1 The Exterior Algebra and the \star Operator 119
10.2 Vector Fields and Differential Forms 121
10.3 The \star Operator and Inner Products 122
10.4 Inner Products on $\Lambda(\mathbb{R}^n)$ 123
10.5 The \star Operator with the Minkowski Metric 125
10.6 Exercises 127

11 The Electromagnetic Two-Form 130
11.1 The Electromagnetic Two-Form 130
11.2 Maxwell’s Equations via Forms 130
11.3 Potentials 131
11.4 Maxwell’s Equations via Lagrangians 132
11.5 Euler-Lagrange Equations for the Electromagnetic Lagrangian 136
11.6 Exercises 139
Contents

12 Some Mathematics Needed for Quantum Mechanics 142
- 12.1 Hilbert Spaces 142
- 12.2 Hermitian Operators 149
- 12.3 The Schwartz Space 153
 - 12.3.1 The Definition 153
 - 12.3.2 The Operators $q(f) = xf$ and $p(f) = -i \frac{df}{dx}$ 155
 - 12.3.3 $S(\mathbb{R})$ Is Not a Hilbert Space 157
- 12.4 Caveats: On Lebesgue Measure, Types of Convergence, and Different Bases 159
- 12.5 Exercises 160

13 Some Quantum Mechanical Thinking 163
- 13.1 The Photoelectric Effect: Light as Photons 163
- 13.2 Some Rules for Quantum Mechanics 164
- 13.3 Quantization 170
- 13.4 Warnings of Subtleties 172
- 13.5 Exercises 172

14 Quantum Mechanics of Harmonic Oscillators 176
- 14.1 The Classical Harmonic Oscillator 176
- 14.2 The Quantum Harmonic Oscillator 179
- 14.3 Exercises 184

15 Quantizing Maxwell’s Equations 186
- 15.1 Our Approach 186
- 15.2 The Coulomb Gauge 187
- 15.3 The “Hidden” Harmonic Oscillator 193
- 15.4 Quantization of Maxwell’s Equations 195
- 15.5 Exercises 197

16 Manifolds 201
- 16.1 Introduction to Manifolds 201
 - 16.1.1 Force = Curvature 201
 - 16.1.2 Intuitions behind Manifolds 201
- 16.2 Manifolds Embedded in \mathbb{R}^n 203
 - 16.2.1 Parametric Manifolds 203
 - 16.2.2 Implicitly Defined Manifolds 205
- 16.3 Abstract Manifolds 206
 - 16.3.1 Definition 206
 - 16.3.2 Functions on a Manifold 212
- 16.4 Exercises 212
Contents

17 Vector Bundles 214
 17.1 Intuitions 214
 17.2 Technical Definitions 216
 17.2.1 The Vector Space \(\mathbb{R}^k \) 216
 17.2.2 Definition of a Vector Bundle 216
 17.3 Principal Bundles 219
 17.4 Cylinders and Möbius Strips 220
 17.5 Tangent Bundles 222
 17.5.1 Intuitions 222
 17.5.2 Tangent Bundles for Parametrically Defined Manifolds 224
 17.5.3 \(T(\mathbb{R}^2) \) as Partial Derivatives 225
 17.5.4 Tangent Space at a Point of an Abstract Manifold 227
 17.5.5 Tangent Bundles for Abstract Manifolds 228
 17.6 Exercises 230

18 Connections 232
 18.1 Intuitions 232
 18.2 Technical Definitions 233
 18.2.1 Operator Approach 233
 18.2.2 Connections for Trivial Bundles 237
 18.3 Covariant Derivatives of Sections 240
 18.4 Parallel Transport: Why Connections Are Called Connections 243
 18.5 Appendix: Tensor Products of Vector Spaces 247
 18.5.1 A Concrete Description 247
 18.5.2 Alternating Forms as Tensors 248
 18.5.3 Homogeneous Polynomials as Symmetric Tensors 250
 18.5.4 Tensors as Linearizations of Bilinear Maps 251
 18.6 Exercises 253

19 Curvature 257
 19.1 Motivation 257
 19.2 Curvature and the Curvature Matrix 258
 19.3 Deriving the Curvature Matrix 260
 19.4 Exercises 261

20 Maxwell via Connections and Curvature 263
 20.1 Maxwell in Some of Its Guises 263
 20.2 Maxwell for Connections and Curvature 264
 20.3 Exercises 266
21 The Lagrangian Machine, Yang-Mills, and Other Forces 267
 21.1 The Lagrangian Machine 267
 21.2 U(1) Bundles 268
 21.3 Other Forces 269
 21.4 A Dictionary 270
 21.5 Yang-Mills Equations 272

Bibliography 275
Index 279

Color plates follow page 234
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>∇</td>
<td>nabla</td>
</tr>
<tr>
<td>Δ</td>
<td>Laplacian</td>
</tr>
<tr>
<td>T</td>
<td>transpose</td>
</tr>
<tr>
<td>\in</td>
<td>element of</td>
</tr>
<tr>
<td>$O(3, \mathbb{R})$</td>
<td>orthogonal group</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>real numbers</td>
</tr>
<tr>
<td>$\rho(\cdot, \cdot)$</td>
<td>Minkowski metric</td>
</tr>
<tr>
<td>$\Lambda^k(\mathbb{R}^n)$</td>
<td>k-forms on \mathbb{R}^n</td>
</tr>
<tr>
<td>\wedge</td>
<td>wedge</td>
</tr>
<tr>
<td>\circ</td>
<td>composed with</td>
</tr>
<tr>
<td>\star</td>
<td>star operator</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>Hilbert space</td>
</tr>
<tr>
<td>$\langle \cdot, \cdot \rangle$</td>
<td>inner product</td>
</tr>
<tr>
<td>\mathbb{C}</td>
<td>complex numbers</td>
</tr>
<tr>
<td>$L^2[0, 1]$</td>
<td>square integrable functions</td>
</tr>
<tr>
<td>\ast</td>
<td>adjoint</td>
</tr>
<tr>
<td>\subset</td>
<td>subset of</td>
</tr>
<tr>
<td>\mathcal{S}</td>
<td>Schwartz space</td>
</tr>
<tr>
<td>h</td>
<td>Planck constant</td>
</tr>
<tr>
<td>\cap</td>
<td>set intersection</td>
</tr>
<tr>
<td>\cup</td>
<td>set union</td>
</tr>
<tr>
<td>$GL(k, \mathbb{R})$</td>
<td>general linear group</td>
</tr>
<tr>
<td>C^∞_p</td>
<td>germ of the sheaf of differentiable functions</td>
</tr>
<tr>
<td>$\Gamma(E)$</td>
<td>space of all sections of E</td>
</tr>
<tr>
<td>∇</td>
<td>connection</td>
</tr>
<tr>
<td>\otimes</td>
<td>tensor product</td>
</tr>
<tr>
<td>\circ</td>
<td>symmetric tensor product</td>
</tr>
</tbody>
</table>
Acknowledgments

There are many people who have helped in the preparing of this book. First off, an earlier draft was used as the text for a course at Williams College in the fall of 2009. In this class, Ben Atkinson, Ran Bi, Victoria Borish, Aaron Ford, Sarah Ginsberg, Charlotte Healy, Ana Inoa, Stephanie Jensen, Dan Keneflick, Murat Kologlu, Edgar Kosgey, Jackson Lu, Makisha Maier, Alex Massicotte, Merideth McClatchy, Nicholas Neumann-Chun, Ellen Ramsey, Margaret Robinson, Takuta Sato, Anders Schneider, Meghan Shea, Joshua Solis, Elly Tietsworth, Stephen Webster, and Qiao Zhang provided a lot of feedback. In particular Stephen Webster went through the entire manuscript again over the winter break of 2009–2010. I would like to thank Weng-Him Cheung, who went through the whole manuscript in the fall of 2013. I would also like to thank Julia Cline, Michael Mayer, Cesar Melendez, and Emily Wickstrom, all of whom took a course based on this text at Williams in the fall of 2013, for helpful comments.

Anyone who would like to teach a course based on this text, please let me know (tgarrity@williams.edu). In particular, there are write-ups of the solutions for many of the problems. I have used the text for three classes, so far. The first time the prerequisites were linear algebra and multivariable calculus. For the other classes, the prerequisites included real analysis. The next time I teach this course, I will return to only requiring linear algebra and multivariable calculus. As Williams has fairly short semesters (about twelve to thirteen weeks), we covered only the first fifteen chapters, with a brief, rapid-fire overview of the remaining topics.

In the summer of 2010, Nicholas Neumann-Chun proofread the entire manuscript, created its diagrams, and worked a lot of the homework problems. He gave many excellent suggestions.

My Williams colleague Steven Miller also carefully read a draft, helping tremendously. Also from Williams, Lori Pedersen went through the text a few
times and provided a lot of solutions of the homework problems. Both William Wootters and David Tucker-Smith, from the Williams Physics Department, also gave a close reading of the manuscript; both provided key suggestions for improving the physics in the text.

Robert Kotiuga helped with the general exposition and especially in giving advice on the history of the subject.

I would like to thank Gary Knapp, who not only went through the whole text, providing excellent feedback, but who also suggested a version of the title. Both Dakota Garrity and Logan Garrity caught many errors and typos in the final draft. Each also gave excellent suggestions for improving the exposition.

I also would like to thank my editor, Lauren Cowles, who has provided support through this whole project.

The referees also gave much-needed advice.

I am grateful for all of their help.