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This is a graduate-level introduction to the theory of Boolean functions, an exciting

area lying on the border of probability theory, discrete mathematics, analysis, and

theoretical computer science. Certain functions are highly sensitive to noise; this can

be seen via Fourier analysis on the hypercube. The key model analyzed in depth is

critical percolation on the hexagonal lattice. For this model, the critical exponents,

previously determined using the now-famous Schramm--Loewner evolution, appear

here in the study of sensitivity behavior. Even for this relatively simple model, beyond

the Fourier-analytic setup, there are three crucially important but distinct approaches:

hypercontractivity of operators, connections to randomized algorithms, and viewing

the spectrum as a random Cantor set. This book assumes a basic background in

probability theory and integration theory. Each chapter ends with exercises, some

straightforward, some challenging.
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4. The Surprising Mathematics of Longest Increasing Subsequences, by Dan Romik

www.cambridge.org/9781107432550
www.cambridge.org


Cambridge University Press
978-1-107-43255-0 — Noise Sensitivity of Boolean Functions and Percolation
Christophe Garban , Jeffrey E. Steif
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Noise Sensitivity of Boolean

Functions and Percolation

CHRISTOPHE GARBAN

ICJ, Université Lyon 1, Lyon
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Preface

The purpose of this book is to present a self-contained theory of Boolean

functions through the prism of statistical physics. The material presented

here was initially designed as a set of lecture notes for the 2010 Clay sum-

mer school, and we decided to maintain the informal style which, we hope,

will make this book more reader friendly.

Before going into Chapter 1, where precise definitions and statements

are given, we wish to describe in an informal manner what this book is

about. Our main companion through the whole book will be what one calls

a Boolean function. This is simply a function of the following type:1

f : {0,1}n→{0,1} .

Traditionally, the study of Boolean functions arises more naturally in theo-

retical computer science and combinatorics. In fact, over the last 20 years,

mainly thanks to the computer science community, a very rich structure has

emerged concerning the properties of Boolean functions. The first part of

this book (Chapters 1 to 5) is devoted to a description of some of the main

achievements in this field. For example, a crucial result that has inspired

much of the work presented here is the so-called KKL theorem (for Kahn–

Kalai–Linial, 1989), which in essence says that any “reasonable” Boolean

function has at least one variable that has a large influence on the outcome

(namely at least Ω(logn/n)). See Theorem 1.14.

The second part of this book is devoted to the powerful use of Boolean

functions in the context of statistical physics and in particular in percolation

theory. It was recognized long ago that some of the striking properties that

hold in great generality for Boolean functions have deep implications in

statistical physics. For example, a version of the KKL theorem enables one

to recover in an elegant manner the celebrated theorem of Kesten from

1 In fact, in this book we view Boolean functions rather as functions from

{−1,1}n→{−1,1} because their Fourier decomposition is then simpler to write down;

nevertheless this is still the same combinatorial object.

xi
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xii Preface

1980 that states that the critical point for percolation on Z2, pc(Z
2), is 1/2.

More recently, Beffara and Duminil-Copin used an extension of this KKL

property obtained by Graham and Grimmett to prove the conjecture that

pc(q) =
√

q

1+
√

q
for the Fortuin–Kasteleyn percolation model with parameter

q ≥ 1 in Z2. It is thus a remarkable fact that general principles such as the

KKL property are powerful enough to capture some (not all) of the main

technical difficulties that arise in understanding the phase transitions of

various statistical physics models.

In the 1990s, Talagrand as well as Benjamini, Kalai, and Schramm pushed

this connection between Boolean functions and statistical physics even fur-

ther. In 1998, Benjamini, Kalai, and Schramm introduced the fruitful con-

cept of noise sensitivity of Boolean functions. Their main motivation was

to study the behavior of critical percolation, but let us briefly explain what

noise sensitivity corresponds to in the more common situation of voting

schemes. Suppose n voters have to decide between two candidates denoted

by 0 and 1. They first have to agree on a voting procedure or voting scheme,

which may be represented by a Boolean function f : {0,1}n → {0,1}. In

France or Sweden, this Boolean function would simply be the majority

function on n bits whereas in the United States, the Boolean function f

would be more complicated: in fancy words, it would correspond to an it-

erated weighted majority function on n ≈ 108 voters. The collection of all

votes is a certain configuration ω in the hypercube {0,1}n. If the election is

“close,” it is reasonable to consider ω= (x1, . . . , xn) as a uniform point cho-

sen in {0,1}n. In other words, we assume that each voter i ∈ [n] tosses a fair

coin in {0,1} and votes accordingly. As such the true result of the election

should be the output f (ω)= f (x1, . . . , xn) ∈ {0,1}. In reality the actual result

of the election will rather be the output f (ωǫ), where ω is an ǫ-perturbation

of the configuration ω. Roughly speaking, we assume that independently

for each voter i ∈ [n], an error occurs (meaning that the value of the bit is

flipped) with probability a fixed parameter ǫ > 0. See Chapter 1 for precise

definitions. In this language, a noise-sensitive Boolean function is a func-

tion for which the outputs f (ω) and f (ωǫ) are almost independent of each

other even with a very small level of noise ǫ. As an example, the parity

function defined by f (x1, . . . , xn)= 1∑ xi≡1 mod 2 is noise sensitive as n→∞.

As we will see, there is a very useful spectral characterization of noise

sensitivity. Indeed, in the same way as a real function g : R\Z→ R can

be decomposed into g(x) =
∑

n∈Z ĝ(n)e2iπnx, one can decompose a Boolean

function f : {0,1}n → {0,1} into a Fourier–Walsh series

f (ω) =
∑

S⊆[n] f̂ (S )χS (ω). (See Chapter 4 for details.) Noise-sensitive
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Preface xiii

Boolean functions are precisely the Boolean functions whose spectrum is

concentrated on “high frequencies”; that is, most of their Fourier coeffi-

cients (in a certain analytic and quantitative manner) correspond to subsets

S ⊆ [n] with |S | ≫ 1.

It is thus not surprising that with such a spectral characterization of noise

sensitivity, a significant part of this book is devoted to various techniques

that allow us to detect high-frequency behavior for Boolean functions. The

techniques we introduce are essentially of three different flavors:

1. Analytical techniques based on hypercontractive estimates (Chapter 5)

2. A criterion based on randomized algorithms (Chapter 8)

3. A study of the “fractal” behavior of frequencies S ⊆ [n] (Chapter 10)

A

B

To make the link with statistical physics, consider the following Boolean

function, which is well known in computer science and in game theory

because it represents the solution of the Hex game. In the figure above,

we represent a Hex game on a 10× 10 table: player A tries to go from the

left boundary to the right using gray hexagon tiles, while player B tries

to go from the top boundary to the bottom using black hexagon tiles. The

players either take turns or, as in the random turn hex game, they toss

a coin at each turn to decide who will move. At the end of the game, we

obtain a tiling of the table as in the figure and the result of the game is then

described by a certain Boolean function f10 : {A,B}100→ {A,B}. Note that

in the figure, player A has won. As we will see, this Boolean function (or

rather the family { fn} defined analogously on n× n tables) is instrumental

in our study of how the model of percolation responds to small random

perturbations.

Boolean functions of this type are notoriously hard to study, and this

book develops tools aimed at understanding such Boolean functions. In

particular, we will eventually see that as n→∞, most of the Fourier trans-

form f̂n of the Hex-function fn on an n×n table is concentrated on frequen-
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xiv Preface

cies of size |S | about n3/4. The appearance of the surprising exponent of 3/4

corresponds to one of the critical exponents that are aimed at describing

the fractal geometry of critical percolation. See Chapter 2.

This high-frequency behavior of the Hex-functions { fn} implies readily

that critical planar percolation on the triangular lattice is highly sensitive to

noise (in a quantitative manner given by the above n3/4 asymptotics). This

noise sensitivity of percolation has surprising consequences concerning the

model of dynamical percolation (see Chapter 11). We will see among

other things that there exist exceptional times at which an infinite primal

cluster coexists with an infinite dual cluster (Theorem 11.9), which is a

very counterintuitive phenomenon in percolation theory.

In Chapter 7, we give another application to statistical physics of a very

different flavor: consider the random metric R on the lattice Zd, d≥2, where

each edge is independently declared to be of length a with probability 1/2

and of length b with probability 1/2 (where 0 < a < b <∞ are fixed). Fas-

cinating conjectures have been made about the fluctuations of the random

R-ball around its deterministic convex limit. In particular, it is conjectured

that these fluctuations are of magnitude R1/3 in two dimensions and that

the law describing these fluctuations is intimately related to the celebrated

Tracy–Widom law that describes the fluctuations of the largest eigenvalue

of large random Hermitian matrices. This book certainly does not settle

this stunning conjecture but it does present the best results to date on the

fluctuations of this metric using a Fourier approach.

This book is structured as follows: in Chapters 1, 3, 4, 5, 8, and 9, we

introduce general tools for Boolean functions that are applicable in various

settings (and are thus not restricted to the context of statistical physics).

Several examples in these chapters illustrate links to other active fields of

mathematics. Chapter 2 is a short introduction to the model of percolation.

Chapters 6, 10, and 11 are more specifically targeted toward the analysis

of the noise sensitivity of critical percolation as well as its consequences

for dynamical percolation. Chapter 7 analyzes the fluctuations of the earlier

mentioned random metrics on Zd, d≥2. Chapter 12 explores a large variety

of interesting topics tangential to the main contents of this book. Finally

Chapter 13 collects some open problems.

We assume readers have the mathematical maturity of a first-year grad-

uate student and a reasonable background in probability theory and in-

tegration theory. Having seen some percolation would be helpful but not

neccesary.
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Notations

Ωn hypercube {−1,1}n
Ik( f ) influence of the kth variable on f

I
p

k
( f ) influence of the kth variable on f at level p

I( f ) total influence of the function f ; see Definition 1.10
Inf( f ) influence vector of f
H( f ) sum of the squared influences; see Definition 5.5

α1(R) probability in critical percolation to have an open path from 0 to ∂B(0,R)
α1(r,R) multiscale version of the above
α4(R) probability of a four-arm event from 0 to ∂B(0,R)
α4(r,R) multiscale version of the above

χS character χS (x1, . . . , xn) :=
∏

i∈S xi

f̂ (S ) Fourier coefficient f̂ (S )= 〈 f ,χS 〉=E
[
f χS

]
E f (m),1≤m≤ n energy spectrum of f ; see Definition 4.1
∇k f discrete derivative along k: ∇k f (ω) := f (ω)− f (σk(ω))

P=P( f ) pivotal set of f ; see Definition 1.7
S =S f spectral sample of f ; see Definition 9.1

Q̂ f spectral measure of f ; see Definition 9.1

P̂ f spectral probability measure of f ; see Definition 9.2

f (n)≍ g(n) there exists some constant C <∞ such that C−1 ≤ f (n)

g(n)
≤C , ∀n≥ 1

f (n)≤O(g(n)) there exists some constant C <∞ such that f (n)≤Cg(n) , ∀n≥ 1
f (n)≥Ω(g(n)) there exists some constant C > 0 such that f (n)≥Cg(n) , ∀n≥ 1

f (n)= o(g(n)) limn→∞
f (n)

g(n)
= 0
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