Advanced Computational Fluid and Aerodynamics

The advent of high performance computers has brought Computational Fluid Dynamics (CFD) to the forefront as a tool to analyze increasingly complex simulation scenarios in many fields. Computational aerodynamics problems are also increasingly moving towards being coupled, multi-physics and multi-scale with complex, moving geometries. The latter presents severe geometry handling and meshing challenges. Simulations also frequently use formal design optimization processes.

This book explains the evolution of CFD and provides a comprehensive overview of the plethora of tools and methods available for solving complex scenarios while exploring the future directions and possible outcomes.

Using numerous examples, illustrations and computational methods the author discusses:

- Turbulence Modeling
- Pre and Post Processing
- Coupled Solutions
- The Importance of Design Optimization
- Multi-physics Problems
- Reduced Order Models
- Large-Scale Computations and the Future of CFD

Advanced Computational Fluid and Aerodynamics is suitable for audiences engaged in computational fluid dynamics, including advanced undergraduates, researchers and industrial practitioners.

Paul G. Tucker is the Rank Professor at the University of Cambridge. He has written more than 300 journal, conference papers and technical reports. He has been a visiting a researcher at NASA and is an associate editor of the *AIAA Journal*.

Advanced Computational Fluid and Aerodynamics

PAUL G. TUCKER

University of Cambridge

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107428836

© Paul G. Tucker 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

ISBN

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Tucker, Paul G.
Advanced computational fluid and aerodynamics / Paul G. Tucker. pages cm
Includes bibliographical references.
Computational fluid dynamics. 2. Aerodynamics. I. Title.
TA357.5.D37T83 2016
620.1'064–dc23 2015027746
ISBN 978-1-107-07590-0 Hardback

978-1-107-42883-6 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my family and Rosie the Leonberger – my constant and patient companion during writing

Contents

 Nomenclature Abbreviations 1 The Need and Methods for Studying Aerodynamics 2 Governing Equations 3 Mesh Generation 	ge ix
 Abbreviations 1 The Need and Methods for Studying Aerodynamics 2 Governing Equations 3 Mesh Generation 	xi
 The Need and Methods for Studying Aerodynamics Governing Equations Mesh Generation 	xvii
2 Governing Equations3 Mesh Generation4 Note in the data to be a second se	1
3 Mesh Generation	8
	67
4 Numerical Methods	148
5 Turbulence	260
6 Advanced Simulation	362
7 Pre- and Post-Processing	459
8 Simulation in the Future	533
Appendices	
A – Basic Finite Element Method	549
B – Discretization of the Equations for a Simple Pressure	
Correction Solver	553
C – TDMA Simultaneous Equation Solvers	557
Index	561

Color plates follow pages between 396 and 397

vii

Preface

In the past 25 years computers have become around a million times faster. This is allowing many examples where full flows or subzones involve the near-direct solution of the Navier-Stokes equations. Since these equations are remarkably exact, such simulations rival measurements. Hence, the Computational Fluid Dynamics (CFD) landscape is beginning to change dramatically. Eddy-resolving simulations should, in roughly the next 10 years, see substantial use in industry in niche areas. The use of eddy-resolving approaches moves CFD to being predictive rather than more postdictive.

CFD problems are increasingly moving towards being coupled, multi-physics and multi-scale with complex geometries. They also frequently use formal design optimization processes. This book attempts to meet this CFD evolution and give an overview of the plethora of methods available to the engineer. Unlike many other volumes, here numerical methods are restricted to just one chapter. This is partly motivated by the observation that even though a vast range of numerical methods exist, as with many other areas of CFD, such a Reynolds Averaged Navier-Stokes (RANS) and LES, just a few schemes/models see widespread use. Doubtless, many will regard this as a bold approach. However, it has enabled me to give more coverage to the areas of CFD knowledge that are needed to exploit it for aerodynamic design.

I am highly grateful to all the PhD students who have so kindly helped me with aspects of text preparation. Special thanks are due to Zaib Ali who, as ever, was a tremendous help with the text preparation. I am grateful for his careful and diligent work. Jiahuan Cui and Mahak Mahak and Richard Oriji also offered tremendous and kind help with the text preparation. I am also grateful to Richard Oriji, Hardeep Kalsi and Sanjeev Shanmuganathan for neatly drawing many of the schematics used. There are two exercises relating to writing compressible and incompressible flow solvers. Inspiration for the compressible was taken from the Cambridge University CFD course. Professor John Denton developed this course, and this inspiration is gratefully acknowledged. As stated by Confucius – I hear, I forget, I write, I remember, I do, I understand. Although time-consuming and challenging, the codewriting tasks are enlightening.

Nomenclature

The nomenclature is set out as follows. First lowercase Roman letters are given, followed by uppercase. Then Greek lowercase, followed by uppercase symbols, are given. Then superscripts and subscripts are set out. Overbars are then listed, followed by special symbols and operators. Finally the abbreviations used in the text are summarized. Please note: to save space, symbols only used once locally in the text are generally not included in this nomenclature.

Lowercase Roman

a_{ii}	Anisotropy tensor
c	Particle velocity, wave velocity, speed of sound or concentration
<i>c</i> ′	Pseudo-acoustic speed
c_p	Specific heat capacity at constant pressure
c_v	Specific heat capacity at constant volume
d	Normal wall distance or displacement
đ	Approximate wall distance function
е	Fluid internal energy due to molecular motion, fundamental charge
f_w, f_{v1}, f_{v2}, f_d	Functions in the Spalart-Allmaras turbulence model
g	Earth's acceleration due to gravity
h	Heat transfer coefficient or height
<i>i</i> , <i>j</i> , <i>k</i>	Array or grid point location identifiers
k	Thermal conductivity, turbulent kinetic energy, temporal weighting
	function component or variable to ensure that the acoustic wave
	speed is similar to the particle speed
k_{ij}	Coefficient in spring analogy
l	Turbulence length scale or smoothing length in SPH approach
l_{μ}, l_{ε}	Turbulence model length scales
m	Particle mass
'n	Mass flow rate
n	Surface normal or direction cosine
р	Static pressure, or number of stages (Chapter 4)
q	Heat flux
q_r	Radiative heat flux
$q1 \ldots q6$	Terms for transformation to curvilinear coordinate system
r	Local pressure gradient

xii	Nomenclat	ure
r, θ, z		Cylindrical polar spatial coordinates
r_d		Shielding function in delayed DES
rms_{ϕ}		Normalised root mean square change
S		Entropy or streamwise coordinate
s _l		Laminar flame burning velocity
\dot{s}_n		Rate of change of species
t		Time
$t_r = t$ -	$ \mathbf{x} - \mathbf{y} /c$	Retarded time
и		Displacement
u, v, w		Instantaneous x, y, z , velocity components
w		Wave number, velocity component, work done by a rotor
<i>x</i> , <i>y</i> , <i>z</i>		Spatial coordinates
$y_{1/2}$		Half width
Upper	case Roman	
Α	Area	, global representation of spatial discretization, nodal coefficient,
	ampl	itude or Roe matrix element
A_{μ}, A_{ε}	Turb	ulence model constants
A_{ω}	Aver	age cross-sectional area normal to vorticity vector
С	Cour	ant number $(u\Delta t/\Delta x)$, objective, correlation function, constant or
	ampl	itude
C_s	Smag	gorinsky constant
C_t	Safet	y factor
C_D	Drag	coefficient
C_{f}	Skin	friction coefficient
C_L	Lift c	coefficient
C_p	Surfa	ice pressure coefficient
D	Time	step to diffusion time scale ratio or diameter scale
Da	Dam	köhler number or damping function
Ε	Your	ng's modulus, error, flux term or energy, constant in wall function or
	sourc	term in $k ext{-} \varepsilon$ model
E_b	Black	x body emission
F	Gene	eral force term, strong conservation flux term, speed function,
	switc	hing function in Menter SST model or function in level set equation
FAR	Free	air ratio
$F_{i,j}$	View	factor (ratio of the radiation received by surface <i>j</i> to that emitted
	from	surface <i>i</i>)
F_p, F_n	Force	es parallel and normal to blade passages, respectively
$[F_S]$	Force	e matrix
F_{SST}	Dela	yed DES function in Menter SST framework
G	Stron	ng conservation flux term or filter kernel/operator
GCI	Grid	convergence index
Gr	Gras	hof number
Н	Stron	ng conservation flux term or representation of step height
Ι	Prolo	ongation operator

Nom	nenclature	xiii
10		
IQ	Eddy-resolving simulation quality metric	
J	Jacobian or radiosity	
Kn	Knudsen number	
K	Porosity, relaxation or acceleration parameter	
K_n, K_{vd}	Body force model calibration constants	
$[K_s]$	Stiffness matrix	
$[K_f]$	Fluid system matrix	
L	Length scale, linear turbulent stress component, wave operator or	
~	Laplacian	
L	Free molecular path	
M	Mach number	
<u>N</u>	Number of mesh points or realizations	
NL	Non-linear turbulent stress component	
Р	Poisson's ratio or production term	
$Pr = \mu c_p/k$	Prandtl number	
Q	Volume flow rate or vorticity identification parameter	
$Q1 \dots Q6$	Transformation terms	
R	Gas constant, radius scale, residual or energy transfer term	
R	Reynolds stress tensor	
Ñ	Universal gas constant	
Re	Reynolds number	
[R]	Coupling matrix	
S	Source or strain term	
S_{ii}	Mean strain rate tensor	
Sc	Schmidt number	
St	Strouhal number	
Т	Temperature or time scale	
Τ	Matrix of eigenvectors	
T_{ii}	Lighthill stress tensor	
TV	Total variation	
U,	Vector of conserved variables or reference velocity	
U, V, W	Velocity components aligned with transformed coordinates	
U_{c}	Bulk or convection velocity	
U_{τ}	Friction velocity	
	Free stream velocity	
V	General velocity scale or volume	
Vol	Cell volume	
Wf	Weighting function	
Lowercase (Greek	

α	Grid expansion factor (Chapter 3), latency parameter in LNS model
	(Chapter 5), design variable, blade metal angle (Chapter 6), or weighting
	parameter in compact scheme or relaxation factor (Chapter 4).
β	Compressibility parameter, coefficient of thermal expansion or weighting
	parameter in compact scheme

xiv No	menclature
$\gamma = c_p/c_v$	Ratio of specific heats, weighting parameter in compact scheme or
	intermittency
δ	Boundary layer thickness, grid spacing, step function or small
	number/perturbation
ε	Turbulence dissipation rate, smoothing parameter, strain in solid, small
	number, scaling parameter in level set related equations, (specified) error
	tolerance/level or emissivity
η	Parameter that defines time levels in discretized equations or transformed
	spatial variable
θ	Angle
К	von Karman constant or weighting parameter in MUSCL scheme (see
	Section 4.4.3.1)
λ	Temporal discretization control parameter, Eigen values, spectral radius of
	matrix, viscosity coefficient $(-2\mu/3)$, Lame's coefficient or wave speed (in
	LES filter definition)
μ	Dynamic viscosity, Lame's coefficient
μ_t	Turbulent viscosity
υ	Kinematic viscosity
v_t	Turbulent kinematic viscosity
ξ, η, ζ	General, transformed coordinates
ρ	Fluid density
σ	Normal stress, Diffusion Prandtl/Schmidt number, turbulence fluctuation
	scale or Stefan-Boltzmann constant
τ	Transformed temporal coordinate, shear stress, pseudo time, time shift or
	relaxation time parameter
ϕ	General variable, flux limiter, or distribution function in lattice Boltzmann
	method
ψ	Stream function, internal potential
ω	Frequency (turbulence) or vorticity

Uppercase Greek

* *	
Г	Diffusion coefficient, domain boundary or Jacobian matrix
Δ	Filter width or space shift
$\Delta x, \Delta x, \Delta z$	Grid spacings
Δt	Time-step length
Λ	Adjoint variable, spectral radius or eigenvalues
Φ	Mass fraction, general conserved variable or electric field
Ψ	Shock switch
Ω	Angular velocity or vorticity

Superscripts

- eq Equilibrium value
- *H* High-order component
- *L* Low-order component
- *n* Time level

Nomenclature

new Latest value

old	Previous value
t	Pertaining to tangential component
ΔX	Variable computed with a coarser grid spacing
/	Perturbation or first derivate of variable or correction in the pressure correction
	equation (see Section 4.7.3)
//	Second derivative
+	Dimensionless distance in wall units
*	Approximate value in the pressure correction equation (Section 4.7.3) or
	distance in wall units
C I	• •
SUDS	Cripis
amb A	Antolent value
A RD	Portaining to backwards difference scheme
DD	Convective flux
	Convective nux Dertaining to colligions
сон Ф	Conterline value
	Dertaining to control volume face
	Pertaining to control volume face
	Portaining to detabase
	Pertaining to database
DES	Peltaining to the DES model Relating to a particular moving fluid particle
JР	Relating to a particular moving huld particle
8 111	Pertaining to grid movement or now translation
ПJ ;; 1	A move subscripts
ι, <i>j</i> , κ	Partaining to inlat
in 11 r	Pertaining to inlet
11,12	Portaining to temporary lighting and and a control volume face
K	Pertaining to turbulence kinetic energy
	Pertaining to kinetic energy preserving scheme
	Pertaining to a liquid
LES	Maximum value
max	Minimum value
min M	Values in model
ND	Values III IIIodel
ND	Reference value or pertaining to offset
out	Portaining to outlet
oui n	Portaining to a particle or draplet
Р Р	Control grid point
Г РС	Central grid point Pressure surface
rof	Reference value
rel	Relative valocity component
P	Pertaining to radiation
n	

Pertaining to RANS model

RANS

XV

Cambridge University Press & Assessment 978-1-107-42883-6 – Advanced Computational Fluid and Aerodynamics Paul G. Tucker Frontmatter More Information

xvi	Iomenclature	
Roe	Pertaining to Roe scheme	
S	Pertaining to solid or sand grain roughness	
stat	Pertaining to stationary coordinate system	
SGS	Pertaining to the subgrid scale	
SS	Pertaining to suction surface	
target	Target value	
t	Pertaining to turbulence	
ир	Pertaining to point of separation	
u, v, w	Pertaining to listed velocity components	
v	Pertaining to a vapour or viscous flux	
w, e, n	f, f, b Geographic grid point notation for control volum	ne face
W, E, I	S, F, B Geographic grid point notation for grid points	
<i>x</i> , <i>y</i> , <i>z</i>	Pertaining to the x , y and z directions, respective	ly
<i>z</i> , <i>r</i> , θ	Pertaining to the axial, radial and tangential dire	ctions, respectively
ϕ	Pertaining to the variable ϕ	
ξ, η, ζ	General, transformed coordinates	
$\Delta x, \Delta z$	Variables represented on coarse and fine grids	
0	Stagnation property	

Overbars

- ~ Dimensionless or smoothed variable
- Averaged or filtered value -
- ^ Relating to undivided Laplacian

Special Symbols/Operators

nally distributed random number operator with mean a	and and
lard deviation b	
er-Stokes and steady Navier-Stokes operator	
eady RANS operator	
c delta function (see Chapter 7)	
necker delta ($\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$)	
rnating third-rank unit tensor	
ulus of quantity	
er-Stokes and steady Navier-Stokes operator eady RANS operator c delta function (see Chapter 7) necker delta ($\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$) rnating third-rank unit tensor ulus of quantity	

Abbreviations

ADI	Alternating Direct Implicit
ACTRAN	ACoustic TRANsmission
ALE	Arbitrary Lagrangian-Eulerian
AUSM	Advection Upstream Splitting Method
AVPI	Pressure correction scheme variant for unsteady flows
BASIC	Beginner's All-purpose Symbolic Instruction Code
BEM	Boundary Element Method
Bi-CGSTAB	Biconjugate Gradient Stabilized Method
BREP	Boundary Representation
BTD	Balanced Tensor Diffusivity (see Section 4.8.1.4)
CAA	Computational Aeroacoustics
CAD	Computer Aided Drawing
CFD	Computational Fluid Dynamics
CGNS	CFD General Notation System
CPR	Correction Procedure via Reconstruction
CVF	Control Volume Face
CSG	Construction Solid Geometry
CVS	Control Volume Surface
DES	Detached Eddy Simulation
DFT	Discrete Fourier Transform
DG	Discontinuous Galerkin
DNS	Direct Numerical Simulation
DOE	Design of Experiment
DRAGON	Direct Replacement of Arbitrary Grid Overlapping by
	Non-structured
DRP	Dispersion Relation Preserving
DSM	Deterministic Stress Model
DSMC	Direct Simulation Monte-Carlo
ENO	Essentially Non-Oscillator
ERCOFTAC	European Research Community On Flow Turbulence And
	Combustion
FD	Finite Difference
FE	Finite Element
FFT	Fast Fourier Transform

xvii

xviii Abbreviations

FORTRANFORmula TRANslating SystemFTForward TransitionFWHFfowcs-Williams and HawkingsGAGenetic AlgorithmGCIGrid Convergence IndexGMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLICLine Integral ConvolutionLNSELinear Navier-Stokes Equations
FTForward TransitionFWHFfowcs-Williams and HawkingsGAGenetic AlgorithmGCIGrid Convergence IndexGMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
FWHFfowcs-Williams and HawkingsGAGenetic AlgorithmGCIGrid Convergence IndexGMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
GAGenetic AlgorithmGCIGrid Convergence IndexGMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
GCIGrid Convergence IndexGMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
GMRESGeneralized Minimum ResidualGPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
GPUGraphical Processor UnitHJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
HJHamilton-JacobiHOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
HOTHigh-Order TermHPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
HPTHigh-Pressure TurbineICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
ICEImplicit Continuous-fluid EulerianIGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
IGESInternational Graphics Exchange StandardILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
ILESImplicit Large Eddy SimulationKEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
KEPKinetic Energy Preservingk-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
k-dk-dimensionalLEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
LEELinear Euler EquationLESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
LESLarge Eddy SimulationLICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
LICLine Integral ConvolutionLNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
LNSLimited Numerical ScalesLNSELinear Navier-Stokes Equations
LNSE Linear Navier-Stokes Equations
LPT Low-Pressure Turbine
MD Molecular Dynamics
MATLAB MATrix LABoratory
MDICE Multidisciplinary Computing Environment
MDO Multidisciplinary Design Optimization
MEM Maximum Entropy Method
MEMS MicroElectroMechanical Systems
MILES Monotone Integrated Large Eddy Simulation
MMS Method of Manufactured Solutions
MRM Multiple Reciprocity Method
MST Mean Source Terms
MUSCL Monotone Upstream-Centred Schemes for Conservation Laws
NACA National Advisory Committee for Aeronautics
NAFEMS National Finite Element Methods and Standards NLAS
Non-Linear Acoustics Solver
NLDE Non-Linear Disturbance Equation
NLES Numerical Large Eddy Simulation
NLAS Non-Linear Acoustics Solver
NSS Nearest Surface Search
PANS Partially Averaged Navier-Stokes
ParMETIS Parallel Graph Partitioning and Fill-reducing Matrix Ordering
PPW Points Per Wave
PISO Pressure Implicit with Splitting of Operator

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-42883-6 — Advanced Computational Fluid and Aerodynamics Paul G. Tucker Frontmatter More Information

> Abbreviations xix POD Proper Orthogonal Decomposition RANS Reynolds Averaged Navier-Stokes RK Runge-Kutta Scheme Reduced Order Model ROM RPM **Recursive Projection Methods** Response Surface Methods or Reynolds Stress Model RSM RT Reverse Transition SARC SA with Rotation or/and Curvature SAS Scale Adaptive-Simulation Semi-Implicit Method for Pressure-Linked Equations SIMPLE SIMPLER Semi-Implicit Method for Pressure-Linked Equations-Revised SIMPLEC Semi-Implicit Method for Pressure Linked Equations-Consistent SIMPLE* Further SIMPLE (see above) scheme variant SIMPLE2 Further SIMPLE (see above) scheme variant SIP Strongly Implicit Procedure SPH **Smooth Particle Hydrodynamics** SST Shear Stress Transport SD Spectral Difference SV Spectral Volume Tri-Diagonal Matrix Algorithm TDMA T-S Tollmien-Schlichting TSL Thin Shear Layer **Total Variation Diminishing** TVD ULIC Unsteady Line Integral Convolution UMIST University of Manchester Institute of Science and Technology URANS Unsteady Reynolds Averaged Navier-Stokes VLES Very Large Eddy Simulation WALE Wall Adapting Local Eddy-Viscosity Weighted Essentially Non-Oscillatory WENO