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Introduction

Noisy fluctuations are abundant in complex systems. In some cases, noise is not

negligible, whereas in some other situations, noise could even be beneficial. It

is desirable to have a better understanding of the impact of noise on dynamical

evolution of complex systems. In other words, it becomes crucial to take ran-

domness into account in mathematical modeling of complex phenomena under

uncertainty.

In 1908, Langevin devised a stochastic differential equation for the motion of

Brownian particles in a fluid, under random impacts of surrounding fluid molecules.

This stochastic differential equation, although important for understanding

Brownian motion, went largely unnoticed in the mathematical community until

after stochastic calculus emerged in the late 1940s. Introductory books on stochas-

tic differential equations (SDEs) include [8, 88, 213].

The goal for this book is to examine and present select dynamical systems

concepts, tools, and methods for understanding solutions of SDEs. To this end,

we also need basic information about deterministic dynamical systems modeled by

ordinary differential equations (ODEs), as presented in the first couple of chapters

in one of the references [110, 290].

In this introductory chapter, we present a few examples of deterministic and

stochastic dynamical systems, then briefly outline the contents of this book.

1.1 Examples of Deterministic Dynamical Systems

We recall a few examples of deterministic dynamical systems, where short time-

scale forcing and nonlinearity can affect dynamics in a profound way.

Example 1.1 A double-well system. Consider a one-dimensional dynamical system

ẋ = x − x3. It has three equilibrium states, −1, 0, and 1, at which the vector field
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x − x3 is zero. Observe that

ẋ = x − x3 = x(1 − x2) =
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< 0, −1 < x < 0 or 1 < x < ∞,

= 0, x = −1, 0, 1,

> 0, −∞ < x < −1 or 0 < x < 1.

Note that ẋ = x − x3 � −
dV (x)

dx
, where the potential function V (x) � −1

2
x2 + 1

4
x4

has two minimal values (sometimes called “wells”); see Figure 1.1.

A solution curve, or orbit, or trajectory, starting with x(0) = x0 in (−1, 0),

decreases in time (because ẋ < 0 on this interval) and approaches the equilib-

rium state −1 as t → +∞, whereas an orbit starting with x(0) = x0 in (−∞, −1)

increases in time (because ẋ > 0 on this interval) and approaches the equilibrium

state −1 as t → +∞. Thus the equilibrium point {−1} is a stable equilibrium state

and is an attractor, that is, it attracts nearby orbits. Likewise {1} is also an attractor.

But the equilibrium state {0} is unstable and is called an repeller. See Figure 1.2

for a few representative solutions curves.

An orbit starting near one equilibrium state {−1} cannot go anywhere near the

other equilibrium state {1}, and vice versa. There is no transition between these two

stable states.

If we only look at the solution curves in the state space, R
1, where state x lives,

we get a state portrait, or as it is often called, a phase portrait.

Figure 1.3 shows the phase portrait for this double-well system.
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Figure 1.2 Solution curves for ẋ = x − x3.

Example 1.2 High-frequency (or short time-scale) forcing. Consider a simple one-

dimensional nonlinear system with time-periodic forcing with frequency ω:

ẋ = −x + x3 + ε sin(ωt), x(0) = 0.5. (1.1)

Solution curves with frequency ω = 2 and ω = 10 are shown in Figures 1.4 and 1.5,

respectively. The difference between low- and high-frequency forcing is visible.

Example 1.3 Small nonlinearity leads to fundamental change in dynamics. Con-

sider a harmonic oscillator (a spring-mass system) of mass m and spring constant

k, under damping that is proportional to the cubic of velocity: mẍ = −kx − εẋ3,

where ε is a positive constant. For simplicity, we take m, k both equal to 1. This

can also be achieved by rescaling the time. Thus,

ẍ = −x − εẋ3 (1.2)

or equivalently,

ẋ = y, (1.3)

ẏ = −x − εy3, (1.4)

-1 0 1 x

Figure 1.3 Phase portrait for ẋ = x − x3.
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Figure 1.4 Solutions of ẋ = −x + x3 + ε sin(ωt), x(0) = 0.5 with frequency
ω = 2: ε = 0 (no “oscillations” or black line) and ε = 0.35 (with “oscillations”
or gray line).

where x is the displacement and y is the velocity of the oscillator. The equilibrium

state is (0, 0).

Without damping (ε = 0), the model equations become

ẋ = y, (1.5)

ẏ = −x. (1.6)
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Figure 1.5 Solutions of ẋ = −x + x3 + ε sin(ωt), x(0) = 0.5 with frequency
ω = 10: ε = 0 (no “oscillations” or black line) and ε = 0.35 (with “oscillations”
or gray line).
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Figure 1.6 Phase portrait for harmonic oscillator ẋ = y, ẏ = −x − εy3: ε = 0
(no damping).

Dividing these two equations, we obtain

dy

dx
= −

x

y

or

xdx + ydy = 0.

Integrating this equation, we see that the solution curves (x(t), y(t)) satisfy the

conservation of energy

x2 + y2 = c (1.7)

for an arbitrary (nonnegative) constant of integration, c. Thus, the solution curves

are circles; see Figure 1.6.

In the case of damping, that is, when ε > 0, the energy is not conserved,

d

dt
(x2 + y2) = 2xẋ + 2yẏ = 2xy + 2y(−x − εy3) = −2εy4 < 0,

at all points, except the equilibrium point (0, 0). Thus, all orbits approach the

equilibrium point (0, 0) as t → ∞, no matter how small the damping coefficient ε

is, as shown in Figure 1.7. Comparing Figure 1.6 and Figure 1.7, we see that the

dynamics, with or without damping, are drastically different.
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Figure 1.7 Phase portrait for damped harmonic oscillator ẋ = y, ẏ = −x − εy3:
ε = 0.5.

Example 1.4 Simple pendulum. Consider a simple pendulum of mass m and length

l: ẍ = −
g

l
sin x where x is the angular displacement from the vertical downward

(equilibrium) position. Note that m does not appear in the equation. Introducing a

time change τ �

�

g

l
t , but still denoting dx

dτ
by ẋ, we have

ẍ = −sin x (1.8)

or, equivalently,

ẋ = y, (1.9)

ẏ = −sin x, (1.10)

where y is the angular velocity of the pendulum. The equilibrium states are (0, 0)

and (±nπ, 0), for n = 1, 2, . . ..

Dividing these two equations, we obtain

dy

dx
= −

sin x

y

or, equivalently,

sin xdx + ydy = 0.

This leads to the conservation of energy

1

2
y2 − cos x = c
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Figure 1.8 Phase portrait for simple pendulum: ẋ = y, ẏ = −sin x.

for an arbitrary constant c. See Figure 1.8 for the phase portrait of this simple

pendulum system.

Now consider the simple pendulum under damping, ẍ = −sin x − εẋ, with

ε > 0. This equation is rewritten as

ẋ = y, (1.11)

ẏ = −sin x − εy. (1.12)

In this case, the energy is not conserved,

d

dt

�

1

2
y2 − cos x

�

= yẏ + (sin x)ẋ = y(−sin x − εy) + (sin x)y = −εy2 < 0,

for all (x, y), except the equilibrium points. As was the case of Example 1.3, the

dynamics with damping is very different, no matter how small the parameter ε is.

See Figure 1.9 for the phase portrait of this damped simple pendulum.

Example 1.5 A coupled system: Small change in one part affects the others dra-

matically. Consider a coupled system

ẋ = 0.001x − xy, (1.13)

ẏ = −6y + εx2, (1.14)
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Figure 1.9 Phase portrait for simple pendulum with damping: ẋ = y, ẏ =

−sin x − εy with ε = 0.25.

where ε is a small real parameter. A small change in the y-part affects the dynamics

dramatically: when ε = 0, the system has an unbounded attracting set (i.e., the

whole x-axis), whereas for ε = 0.01, the system has a bounded attracting set (in

fact, an inertial manifold). Compare Figures 1.10 and 1.11.
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Figure 1.10 Phase portrait for ẋ = 0.001x − xy, ẏ = −6y.
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Figure 1.11 Phase portrait for ẋ = 0.001x − xy, ẏ = −6y + 0.01x2: the global
attractor is clearly seen (gray curve within −7 < x < 7 and near the x-axis).

1.2 Examples of Stochastic Dynamical Systems

Let us look at a few examples of stochastic differential equations arising in the

modeling of complex phenomena from various disciplines.

Example 1.6 Motion of “particles” subject to a random force, in physics, bio-

physics, and geophysics. A particle moving in one dimension x, subject to a driving

force K(x), a friction force −γ ẋ with a nonnegative parameter γ , and a random

force ξ (t), is described by [280, 179]:

ẍ + γ ẋ = K(x) + ξ (t). (1.15)

This includes the model equation of motion for a simple pendulum under a random

force,

ẍ = sin(x) + ξ (t), (1.16)

where x is now the angular displacement.

A similar stochastic differential equation, still in one dimension, arises to model

a mechanism (socalled ergodic pumping) that drives biomolecular conformation

changes [189, 190]. This equation in two or three dimensions is a model for the

motion of geophysical fluid particles under random influences [40, 229, 108].

Example 1.7 A tumor growth system with immunization. In the absence of an

immune reaction, tumor evolution is thought to follow a growth law that can be

approximated by a logistic function. With the tumor-immune interactions taken into
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account, a dynamical evolution model for a tumor growth system with immunization

was recently proposed [37]:

ẋ = ax − bx2 −
βx2

1 + x2
+ ξ (t), (1.17)

where x is the density of tumor cells, a is the deterministic growth rate, b is the

decay rate, and β is the strength of the immunization. The term ξ (t) represents the

uncertain impact on the growth rate of tumor tissue by environmental factors, such

as the supply of nutrients, the immunological state of the host, chemical agents,

temperature, and radiation.

Example 1.8 Mirror symmetry breaking and restoration in biomolecules under

random fluctuations. Molecules that are mirror images of each other are called

enantiomers. However, this mirror or chiral symmetry is broken in all biological

systems. When this symmetry breaking occurred and whether it may be restored

are unanswered questions. The chiral structures include proteins, almost always

as the left-handed enantiomers (L), and DNA, RNA polymers, and sugars with

chiral building blocks composed by right-handed (D) monocarbohydrates. To study

this chiral symmetry breaking and restoration, a stochastic model is introduced

[124] to quantify the dynamical evolution of the enantiomeric excess x = ([L] −

[D])/([L] + [D]), which is the order parameter for mirror symmetry breaking, and

the net chiral matter y = [L] + [D],

ẋ = −2k1Ax/y +
1

2
(k3 − k−2)xy(1 − x2) + ξ (t), (1.18)

ẏ = 2k1A − y2

�

k−2 +
1

2
(k3 − k−2)(1 − x2)

�

+ (k2A − k−1)y, (1.19)

where ξ (t) is a noise process due to internal and external fluctuations of the chemical

system, A is the achiral reactant (kept at constant concentration), and k±1, k±2

together with k3 are various reaction, amplification, or inhibition rates.

Example 1.9 Dynamics of two inhibitory neural units. Brown and Holmes [42]

considered a stochastic dynamical model for two mutually inhibiting, leaky, neu-

ral units characterized by state variables xj , subject to external stimuli ρj , addi-

tive noises modeled by independent Brownian motions (to be defined in Chap-

ter 3) Bj (t), and “priming biases” i0 + bj , including an overall level i0 and

separate unit biases bj . Each unit inhibits the other via an activation function

f (x; g, b) = 1/[1 + exp(−g(x − b))] with gain g that achieves half level at x = b.
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