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Basic Properties

1.1. The Definition of Catalan Numbers

There are many equivalent ways to define Catalan numbers. In fact, the main

focus of this monograph is the myriad combinatorial interpretations of Catalan

numbers. We also discuss some algebraic interpretations and additional aspects

of Catalan numbers. We choose as our basic definition their historically first

combinatorial interpretation, whose history is discussed in Appendix B along

with further interesting historical information on Catalan numbers. Let Pn+2

denote a convex polygon in the plane with n+2 vertices (or convex (n+2)-gon

for short). A triangulation of Pn+2 is a set of d 21 diagonals of Pn+2 which do

not cross in their interiors. It follows easily that these diagonals partition the

interior of Pn+2 into n triangles. Define the nth Catalan number Cn to be the

number of triangulations of Pn+2. Set C0 = 1. Figure 1.1 shows that C1 = 1,

C2 = 2, C3 = 5, and C4 = 14. Some further values are C5 = 42, C6 = 132,

C7 = 429, C8 = 1430, C9 = 4862, and C10 = 16796.

In this chapter we deal with the following basic properties of Catalan

numbers: (1) the fundamental recurrence relation, (2) the generating function,

(3) an explicit formula, and (4) the primary combinatorial interpretations of

Catalan numbers. Throughout this monograph we use the following notation:

C complex numbers

R real numbers

Q rational numbers

Z integers

N nonnegative integers {0,1,2, . . . }
P positive integers {1,2,3, . . . }
[n] the set {1,2, . . . ,n}, where n *N

#S number of elements of the (finite) set S
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2 Catalan Numbers

Figure 1.1. Triangulated polygons.

e

Figure 1.2. The recursive structure of a triangulated polygon.

1.2. The Fundamental Recurrence

To obtain a recurrence relation for Catalan numbers, let Pn+3 be a convex

(n+3)-gon. Fix an edge e of Pn+3, and let T be a triangulation of Pn+3. When

we remove the edge e from T we obtain two triangulated polygons, say Q1

and Q2, in counterclockwise order from e, with one common vertex. If Qi has

ai + 2 vertices, then a1 + a2 = n. See Figure 1.2, where n = 9, a1 = 5, and

a2 = 4. It is possible that one of Q1 or Q2 is just a single edge, which occurs

when the triangle of T containing e has an additional edge on Pn+3, necessarily

adjacent to e. In this case we consider the edge as a 2-gon, which has C0 = 1

triangulations.
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Basic Properties 3

Conversely, given two triangulated polygons with a1 +2 and a2 +2 vertices,

we can put them together to form a triangulated (n + 3)-gon by reversing

the above procedure. Since there are Cai
triangulations of Qi, we obtain the

recurrence and initial condition

Cn+1 =
n

�

k=0

CkCn2k, C0 = 1. (1.1)

This is the most important and most transparent recurrence satisfied by

Cn. It easily explains many of the combinatorial interpretations of Catalan

numbers, where the objects being counted have a decomposition into two

parts, analogous to what we have just done for triangulated polygons. For other

“Catalan objects,” however, it can be quite difficult, if not almost impossible,

to see directly why the recurrence (1.1) holds.

1.3. A Generating Function

Given the recurrence (1.1), it is a routine matter for those familiar with gener-

ating functions to obtain the next result. For some background information on

generating functions and the rigorous justification for our manipulations, see

[64], especially Chapter 1. Let us just mention now one aspect of generating

functions, namely, the binomial theorem for arbitrary exponents. When a is

any complex number, or even an indeterminate, and k * N, then we define the

binomial coefficient

�

a

k

�

=
a(a 2 1) · · · (a 2 k + 1)

k!
.

The “generalized binomial theorem” due to Isaac Newton asserts that

(1 + x)a =
�

ng0

�

a

n

�

xn. (1.2)

This formula is just the formula for the Taylor series of (1 + x)a at x = 0. For

our purposes we consider generating function formulas such as Equation (1.2)

to be “formal” identities. Questions of convergence are ignored.

1.3.1 Proposition. Let

C(x) =
�

ng0

Cnxn

= 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + 1430x8 +·· · .
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4 Catalan Numbers

Then

C(x) =
1 2

:
1 2 4x

2x
. (1.3)

Proof. Multiply the recurrence (1.1) by xn and sum on n g 0. On the left-hand

side we get
�

ng0

Cn+1xn =
C(x)2 1

x
.

Since the coefficient of xn in C(x)2 is
"n

k=0 CkCn2k, on the right-hand side we

get C(x)2. Thus

C(x)2 1

x
= C(x)2,

or

xC(x)2 2 C(x)+ 1 = 0. (1.4)

Solving this quadratic equation for C(x) gives

C(x) =
1 ±

:
1 2 4x

2x
. (1.5)

We have to determine the correct sign. Now, by the binomial theorem for the

exponent 1/2 (or by other methods),

:
1 2 4x = 1 2 2x +·· · .

If we take the plus sign in Equation (1.5) we get

1 + (1 2 2x +·· · )
2x

=
1

x
2 1 +·· · ,

which is not correct. Hence we must take the minus sign. As a check,

1 2 (1 2 2x +·· · )
2x

= 1 +·· · ,

as desired. �

1.4. An Explicit Formula

From the generating function it is easy to obtain a formula for Cn.

1.4.1 Theorem. We have

Cn =
1

n + 1

�

2n

n

�

=
(2n)!

n!(n + 1)!
. (1.6)
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Basic Properties 5

Proof. We have

:
1 2 4x = (1 2 4x)1/2 =

�

ng0

�

1/2

n

�

xn.

Hence by Proposition 1.3.1,

C(x) =
1

2x

�

1 2
�

ng0

�

1/2

n

�

(24x)n

�

= 2
1

2

�

ng0

�

1/2

n + 1

�

(24)n+1xn.

Equating coefficients of xn on both sides gives

Cn = 2
1

2

�

1/2

n + 1

�

(24)n+1. (1.7)

It is a routine matter to expand the right-hand side of Equation (1.7) and verify

that it is equal to 1
n+1

�

2n

n

�

. �

The above proof of Theorem 1.4.1 is essentially the same as the proof

of Bernoulli-Euler-Segner discussed in Appendix B. In Section 1.6 we will

present a more elegant proof.

The expression 1
n+1

�

2n

n

�

is the standard way to write Cn explicitly. There is

an equivalent expression that is sometimes more convenient:

Cn =
1

2n + 1

�

2n + 1

n

�

. (1.8)

Note also that

Cn =
1

n

�

2n

n 2 1

�

.

1.5. Fundamental Combinatorial Interpretations

Among the myriad of combinatorial interpretations of Catalan numbers, a

few stand out as being the most fundamental, namely, polygon triangulations

(already considered), binary trees, plane trees, ballot sequences, parenthesiza-

tions, and Dyck paths. They will be the subject of the current section. For all

of them the recurrence (1.1) is easy to see, or, what amounts to the same thing,

there are simple bijections among them. We begin with the relevant definitions.

A binary tree is defined recursively as follows. The empty set ' is a binary

tree. Otherwise a binary tree has a root vertex v, a left subtree T1, and a right
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6 Catalan Numbers

Figure 1.3. The five binary trees with three vertices.

Figure 1.4. The five plane trees with four vertices.

subtree T2, both of which are binary trees. We also call the root of T1 (if T1 is

nonempty) the left child and the root of T2 (if T2 is nonempty) the right child

of the vertex v. We draw a binary tree by putting the root vertex v at the top,

the left subtree T1 below and to the left of v, and the right subtree T2 below

and to the right of v, with an edge drawn from v to the root of each nonempty

Ti. Figure 1.3 shows the five binary trees with three vertices.

A plane tree (also called an ordered tree or Catalan tree) P may be defined

recursively as follows. One specially designated vertex v is called the root of P.

Thus plane trees, unlike binary trees, cannot be empty. Then either P consists

of the single vertex v, or else it has a sequence (P1, . . . ,Pm) of subtrees Pi,

1 f i f m, each of which is a plane tree. Thus the subtrees of each vertex are

linearly ordered. When drawing such trees, these subtrees are written in the

order left-to-right. The root v is written on the top, with an edge drawn from

v to the root of each of its subtrees. Figure 1.4 shows the five plane trees with

four vertices.

A ballot sequence of length 2n is a sequence with n each of 1’s and 21’s

such that every partial sum is nonnegative. The five ballot sequences of length

six (abbreviating 21 by just 2) are given by

111222 112122 112212 121122 121212 .

The term “ballot sequence” arises from the following scenario. Two

candidates A and B are running in an election. There are 2n voters who vote

sequentially for one of the two candidates. At the end each candidate receives

n votes. What is the probability pn that A never trails B in the voting and both

candidates receive n votes? If we denote a vote for A by 1 and a vote for B by

21, then clearly the sequence of votes forms a ballot sequence if and only if A
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never trails B. Moreover, the total number of ways in which the 2n voters can

cast n votes for each of A and B is
�

2n

n

�

. Hence if fn denotes the number of ballot

sequences of length 2n, then pn = fn/
�

2n

n

�

. We will see in Theorem 1.5.1(iv) that

fn = Cn, so pn = 1/(n+1). For the generalization where A receives m votes and

B receives n f m votes, see Problem A2.1 For the history behind this result, see

Section B.7.

A parenthesization or bracketing of a string of n + 1 x’s consists of the

insertion of n left parentheses and n right parentheses that define n binary

operations on the string. An example for n = 6 is (((xx)x)((xx)(xx))). In

general we can omit the leftmost and rightmost parentheses without loss of

information. Thus our example denotes the product of (xx)x with (xx)(xx),

where (xx)x denotes the product of xx and x, and (xx)(xx) denotes the product

of xx and xx. There are five ways to parenthesize a string of four x’s, namely,

x(x(xx)) x((xx)x) (xx)(xx) (x(xx))x ((xx)x)x.

Let S be a subset of Zd. A lattice path in Zd of length k with steps in S is a

sequence v0,v1, . . . ,vk *Zd such that each consecutive difference vi 2vi21 lies

in S. We say that L starts at v0 and ends at vk, or more simply that L goes from

v0 to vk. A Dyck path of length 2n is a lattice path in Z2 from (0,0) to (2n,0)

with steps (1,1) and (1,21), with the additional condition that the path never

passes below the x-axis. Figure 1.5(a) shows the five Dyck paths of length six

(so n = 3). A trivial but useful variant of Dyck paths (sometimes also called a

Dyck path) is obtained by replacing the step (1,1) with (1,0) and (1,21) with

(0,1). In this case we obtain lattice paths from (0,0) to (n,n) with steps (1,0)

and (0,1), such that the path never rises above the line y = x. See Figure 1.5(b)

for the case n = 3.

It will come as no surprise that the objects we have just defined are counted

by Catalan numbers. We will give simple bijective proofs of this fact. By a

bijective proof we mean a proof that two finite sets S and T have the same

cardinality (number of elements) by exhibiting an explicit bijection ϕ : S ³ T .

To prove that ϕ is a bijection, we need to show that it is injective (one-to-one)

and surjective (onto). This can either be shown directly or by defining an

inverse ψ : T ³ S such that ψϕ is the identity map on S, i.e., ψϕ(x) = x

for all x * S, and ϕψ is the identity map on T . (Note that we are composing

functions right-to-left.) Often we will simply define ϕ without proving that it is

a bijection when such a proof is straightforward. As we accumulate more and

more objects counted by Catalan numbers, we have more and more choices

1 A reference to a problem whose number is preceded by A refers to a problem in Chapter 4.
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8 Catalan Numbers

(a)

(b)

Figure 1.5. The five Dyck paths of length six.

for which of these objects we can biject to when trying to show that some new

objects are also counted by Catalan numbers.

1.5.1 Theorem. The Catalan number Cn counts the following:

(i) Triangulations T of a convex polygon with n + 2 vertices.

(ii) Binary trees B with n vertices.

(iii) Plane trees P with n + 1 vertices.

(iv) Ballot sequences of length 2n.

(v) Parenthesizations (or bracketings) of a string of n + 1 x’s subject to a

nonassociative binary operation.

(vi) Dyck paths of length 2n.

Proof. (i)³(ii) (that is, the construction of a bijection from triangulations T

of polygons to binary trees B). Fix an edge e of the polygon as in Figure 1.2. Put

a vertex in the interior of each triangle of T . Let the root vertex v correspond to

the triangle for which e is an edge. Draw an edge f � between any two vertices

that are separated by a single edge f of T . As we move along edges from the

root to reach some vertex v after crossing an edge f of T , we can traverse the

edges of the triangle containing v in counterclockwise order beginning with

the edge f . Denote by f1 the first edge after f and by f2 the second edge. Then

we can define the (possible) edge f �
1 crossing f2 to be the left edge of the vertex

v of B, and similarly f �
2 is the right edge. Thus we obtain a binary tree B, and

this correspondence is easily seen to be a bijection. Our rather long-winded

description should become clear by considering the example of Figure 1.6(a),

where the edges of the tree B are denoted by dashed lines. In Figure 1.6(b) we

redraw B in “standard” form.

(iii)³(ii) Given a plane tree P with n + 1 vertices, first remove the root

vertex and all incident edges. Then remove every edge that is not the leftmost

edge from a vertex. The remaining edges are the left edges in a binary tree B

www.cambridge.org/9781107427747
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v

(a) (b)

e

Figure 1.6. A binary tree associated with a triangulated polygon.
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h i j

d
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Figure 1.7. A binary tree constructed from a plane tree.

whose root is the leftmost child of the root of P. Now draw edges from each

child w of a vertex v of P to the next child (the one immediately to the right of

w) of v (if such a child exists). These horizontal edges are the right edges of

B. The steps can be reversed to recover P from B, so the map P �³ B gives the

desired bijection. See Figure 1.7 for an example. On the left is the plane tree P.

In the middle is the binary tree B with left edges shown by solid lines and right

(horizontal) edges by dashed lines. On the right is B rotated 45ç clockwise and

“straightened out” so it appears in standard form.

This elegant bijection is due to de Bruijn and Morselt [11]. Knuth

[33, §2.3.2] calls it the “natural correspondence.” For some extensions, see

Klarner [32].
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10 Catalan Numbers

(iii)³(iv) We wish to associate a ballot sequence a1a2 · · ·a2n of length n

with a plane tree P with n + 1 vertices. To do this, we first need to define a

certain canonical linear ordering on the vertices of P, called depth first order

or preorder, and denoted ord(P). It is defined recursively as follows.

Let P1, . . . ,Pm be the subtrees of the root v (listed in the order defining P as

a plane tree). Set

ord(P) = v, ord(P1), . . . , ord(Pm) (concatenation of words).

The preorder on a plane tree has an alternative informal description as follows.

Imagine that the edges of the tree are wooden sticks, and that a worm begins

facing left just above the root and crawls along the outside of the sticks, until

(s)he (or it) returns to the starting point. Then the order in which vertices are

seen for the first time is preorder. Figure 1.8 shows the path of the worm on a

plane tree P, with the vertices labeled 1 to 11 in preorder.

We can now easily define the bijection between plane trees P and ballot

sequences. Traverse P in preorder. Whenever we go down an edge (away from

the root), record a 1. Whenever we go up an edge (toward the root), record

a 21. For instance, for the plane tree P of Figure 1.8, the ballot sequence is

(writing as usual 2 for 21)

11121222121121121222 .

It is also instructive to see directly how ballot sequences are related to the

recurrence (1.1). Given a ballot sequence β = a1a2 · · ·a2n+2 of length 2(n+1),

8

2

3

4
105 11

9

7

6

1

Figure 1.8. A plane tree traversed in preorder.
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