Rapid Thermal and Integrated Processing VII
Rapid Thermal and Integrated Processing VII

EDITORS:

Mehmet C. Öztürk
North Carolina State University
Raleigh, North Carolina, U.S.A.

Fred Roozeboom
Philips Research Laboratories
Eindhoven, The Netherlands

Paul J. Timans
AG Associates
San Jose, California, U.S.A.

Sylvia H. Pas
Texas Instruments
Dallas, Texas, U.S.A.

Materials Research Society
Warrendale, Pennsylvania
CONTENTS

Preface ... xi
Acknowledgments .. xiii
Materials Research Society Symposium Proceedings xiv

PART I: RTP EQUIPMENT: MODELLING AND NEW CONCEPTS

*Comparison of the Performance of Single Wafer and Batch Systems for Identical Processes .. 3
 T. Claasen, R. Van Driel, A. Hasper, and S. Radelaar

Partial Transparency Effects of Silicon During Rapid Thermal Processing .. 15
 A.R. Abramson, H. Tada, P. Nieva, P. Zavracky, I. Miaoulis, and P.Y. Wong

The Effect of Chamber Components on Wafer Temperature Response in an RTP System ... 21
 N. Acharya and P.J. Timans

*Emissivity of Coated Silicon at Elevated Temperatures 27
 H. Rogne and H. Ahmed

On the Entrance Effects and the Influence of Buoyancy Forces on the Fluid Flow in RTP Reactors ... 39

Residual Gases and Their Influence on Processes in the Atmospheric Rapid Thermal Processing Equipment 45
 Yao Zhi Hu and Sing Pin Tay

In-Line Ambient Impurity Measurement on a Rapid Thermal Process Chamber by Atmospheric Pressure Ionization Mass Spectrometry .. 51
 Eiichi Kondoh, Guy Vereecke, Marc M. Heyns, Karen Maex, Thomas Gutt, and Zsolt Nényei

Beyond Thermal Budget: Using D-t in Kinetic Optimization of RTP 57
 R. Ditchfield and E.G. Seebauer

Development and Characterization of a CVD System for Thin-Film Solar Cell Manufacturing 63
 F.R. Falter, A. Hurtle, and N. Schillinger

*Invited Paper
PART II: TEMPERATURE MEASUREMENT AND CONTROL IN RTP EQUIPMENT

Advances in RTP Temperature Measurement and Control 71
Bruce Peuse, Gary Miner, Mark Yam, and Curtis Elia

RTP Calibration Wafer Using Thin-Film Thermocouples 87
R.G. Kreider, D.F. Dewitt, B.K. Tsai, F.J. Lovas, and D.W. Allen

Issues in Emissivity of Silicon ... 95
S. Abedrabbo, J.C. Hensel, O.H. Gokce, F.M. Tong, B. Sopori,
A.T. Flory, and N.M. Ravindra

Difference Between Wafer Temperature and Thermocouple Reading During Rapid Thermal Processing 103
T. Borca-Tasciuc, D.A. Achimov, and G. Chen

Model Based Temperature Control in RTP Yielding ±0.1°C
Accuracy on a 1000°C, 2 Second, 100°C/s Spike Anneal 109
Peter Vandenabeele and Wayne Renken

Calibration of Wafer Temperature to NIST Traceable Standards
Using an Isothermal Cavity ... 115
Peter Vandenabeele and Wayne Renken

RTP Temperature Measurements Using Si Grating Prepared by Laser Ablation for Large Diameter Wafer Applications 121

Meeting RTP Temperature Accuracy Requirements: Measurement
and Calibrations at NIST ... 127
F.J. Lovas, B.K. Tsai, and C.E. Gibson

Laser Ultrasonic Instrumentation for Accurate Temperature Measurement of Silicon Wafers in Rapid Thermal Processing Systems ... 135
Dan Klimek, Brian Anthony, Agostino Abbate, and Petros Kotidis

PART III: MOSFET GATE STACK ENGINEERING

Growth and Characterization of Thin Wet Oxides Grown by Rapid Thermal Processing ... 143
R. Sharangpani, J. Das, S.P. Tay, R.P.S. Thakur, T.C. Yang,
and K.C. Saraswat

Cathodoluminescence Studies of Si-SiO₂ Interfaces Prepared by Plasma-Assisted Oxidation and Subjected to Post-Oxidation Rapid Thermal Annealing ... 151
J. Schätzer, A.P. Young, L.J. Brillson, H. Nilm, and G. Lucovsky
Evaluation and Comparison of 3.0nm Gate-Stack Dielectrics for Tenth-Micron Technology NMOSFETs 157

Evaluation of 2.0nm Grown and Deposited Dielectrics in 0.1|im PMOSFETs ... 163
A. Srivastava, F. Tiinisch, E. Vogel, C. Parker, C.M. Osburn, N.A. Masnari, J.J. Wortman, and J.R. Hauser

"Rapid Thermal Processes for Future Nanometer MOS Devices 171
John R. Hauser

Nitrogen Profile Engineering in Thin Gate Oxides 181
J. Kuehne, S. Hattangady, J. Piccirillo, G.C. Xing, G. Miner, D. Lopes, and R. Tauber

Defect Reduction in Remote Plasma Deposited Silicon Nitride by Post-Deposition Rapid Thermal Annealing 187
G. Lucovsky, C.R. Parker, Y. Wu, and J.R. Hauser

Alternative Gate Dielectrics with BST/TiO2/(Barrier Oxide) Stacked Structure .. 193
Yongjoo Jeon, Byoung Hun Lee, Keith Zawadzki, Wen-Jie Qi, and Jack C. Lee

An Atomic Force Microscopy and Ellipsometry Study of the Nucleation and Growth Mechanism of Polycrystalline Silicon Films on Silicon Dioxide ... 199
C. Basa, M. Tinani, and E.A. Irene

A Comparison of MOS Devices with In Situ Boron Doped Polysilicon and Poly-SiGe Gates Deposited in an RTCVD System using Si2H6 and B2H6 Gas Mixture ... 207

Polycrystalline Si1-x-yGe2xCy for Suppression of Boron Penetration in PMOS Structures .. 213
C.L. Chang and J.C. Sturm

Chemical Stability of Advanced Metal Gate and Ultra-Thin Gate Dielectric Interface During Rapid Thermal Annealing 219
B. Claffin, M. Binger, and G. Lucovsky

PART IV: MOSFET CHANNEL AND SOURCE/DRAIN ENGINEERING

"Characterization of Low Energy Boron Implantation and Fast Ramp-Up Thermal Annealing ... 227

*Invited Paper
*Simulation of Rapid Thermal Annealed Boron Ultrashallow Junctions in Inert and Oxidizing Ambient ... 237
W. Lerch, M. Glück, N.A. Stolwijk, H. Walk, M. Schäfer, S.D. Marcus,
D.F. Downey, J.W. Chow, and H. Marquardt

Annealing Studies on Low Energy As⁺ and As²⁺ Implants 257
Raghu Srinivasa, Vikas Agarwal, Jinming Liu, Daniel F. Downey,
and Sanjay Banerjee

The Effects of Small Concentrations of Oxygen in RTP Annealing of Low Energy Boron, BF₂ and Arsenic Ion Implants 263
Daniel F. Downey, Judy W. Chow, Wilfried Lerch, Juergen Ness,
and Steven D. Marcus

*Novel Applications of Rapid Thermal Chemical Vapor Deposition for Nanoscale MOSFET’s ... 273
J.C. Sturm, M. Yang, C.L. Chang, and M.S. Carroll

In Situ Boron-Doped Epitaxial Silicon Films Grown by UHV-RTCVD: Applications in Channel Engineering and Ultrashallow Junction Formation ... 283
I. Ban, M.C. Öztürk, and K.L. Lee

Facet Free Selective Silicon Epitaxy by Rapid Thermal Chemical Vapor Deposition ... 289
Katherine E. Violette, Rick Wise, Chih-Fing Chao, and
Sreenath Unnikrishnan

PART V: SILICIDES

*Control and Impact of Processing Ambient During Rapid Thermal Silicidation ... 297
K. Maex, E. Kondoh, A. Lauwers, A. Steegen, M. De Potter,
P. Besser, and J. Proost

New Approaches for Formation of Ultra-Thin PtSi Layers for Infrared Applications ... 307
R.A. Donaton, S. Jin, H. Bender, M. Zagrebnow, K. Baert,
K. Maex, A. Vantomme, and G. Langouche

A Novel Low Temperature Self-Aligned Ti Silicide Technology for Sub-0.18μm CMOS Devices .. 313
L.P. Ren, P. Liu, G.Z. Pan, and Jason C.S. Woo

Process Design and Integration of Salicide and Source/Drain Process Modules for Improved Device Performance 319
Pushkar P. Apte, Sharad Saxena, Suraj Rao, Karthik Vasanth,
Douglas A. Prinslow, Jorge A. Kilti, Terence Broedijn, and
Gordon Pollack

*Invited Paper
A Study of Transistor Optimization in a 0.25 Micron CMOS Flow Using Source/Drain and Silicide Process Modules and Their Interactions .. 325

Optimization of Ti and Co Self-Align Silicide RTP for 0.10 μm CMOS .. 331
J.A. Kittl, Q.Z. Hong, H. Yang, N. Yu, M. Rodder, P.P. Apte, W.T. Shiau, C.P. Chao, T. Breedijk, and M.P. Pas

PART VI: NEW APPLICATIONS OF RAPID THERMAL PROCESSING

*Novel Applications of Rapid Photothermal Chemical Vapor Deposition .. 339

Iron-Silicate Glassy Films by Sol-Gel Conversion Induced by Rapid Thermal Processing 351
Rene E. Van De Leest and Fred Roozeboom

Selective Oxidation of Si in the Presence of W and WN .. 359
Boyang Lin, Ming Hwang, Jong-Ping Lu, Wei-Yung Hsu, Mike Pas, Joe Piccirillo, Gary Miner, Kathy O'Connor, Gary Xing, and Dave Lopes

In Situ Wafer Cleaning Prior to Selective Hemispherical Grain (HSG) Polysilicon Deposition Using RT-CVD .. 365
B.J. Brosilow, S. Levy, and Y.E. Gilboa

Improved Thermal Stability of CVD WSi2 During Furnace Oxidation by a Rapid Thermal Anneal Prefreatment .. 371
Alain F. Blosse

SiGe Heteroepitaxy for High Frequency Circuits .. 379
B. Tillack, D. Bolze, G. Fischer, G. Kissing, D. Knoll, G. Ritter, P. Schley, and D. Wolansky

Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector via Rapid Thermal Annealing .. 385

The Two-Step Rapid Thermal Annealing Effect of the Prepatterned a-Si Films .. 391
Kee-Chan Park, Kwon-Young Choi, Min-Cheol Lee, Min-Koo Han, and Chan-Zul Yoon

Author Index .. 399

Subject Index .. 401

*Invited Paper
PREFACE

The 1998 MRS Spring Meeting symposium on "Rapid Thermal and Integrated Processing" was one of the most exciting meetings in recent years. The papers presented at this symposium illustrate how the range of rapid thermal processing (RTP) applications in silicon device manufacturing is rapidly expanding, and how mature the technology has become.

The first day of the symposium covered modelling of RTP equipment and techniques for temperature measurement and control. Many characteristics of RTP technology arise from the impact of the optical properties of semiconductor wafers on thermal response and on pyrometric temperature measurement. Papers covering equipment issues illustrate that problems such as temperature uniformity and measurement, traditionally viewed as limitations for RTP technology, are well on the way to being resolved.

Perhaps one of the most exciting and dynamic areas of RTP research is in the field of gate dielectrics, where RTP offers a variety of paths for the creation of the very thin films. Future MOSFETs with channel lengths less than 0.1 μm will require an equivalent oxide thickness of 15Å or less. At this thickness, SiO₂ ceases to be a viable material because of carrier tunneling, which results in gate leakage. This technological barrier was one of the key themes to emerge from the symposium. Several papers showed that RTP can provide unique capabilities for dielectric formation. Papers covered a large spectrum of solutions ranging from the use of nitrogen-doped oxides to new high-dielectric constant materials. A panel discussion was also held on ultrathin gate dielectrics, which attracted a large audience. The panelists were M. Green (Lucent Technologies), J. Kuehne (Texas Instruments), B. Triplett (Intel), J. Hauser (North Carolina State University), and D.L. Kwong (University of Texas at Austin). The discussion suggested that silicon nitride could provide an important stepping-stone on the path to more radical alternatives based on high-dielectric constant materials.

The symposium also included sessions covering the other vital ingredients for advanced MOSFET engineering, such as alternative gate electrode materials and new RTP processes for ultrashallow source/drain junctions and low-resistivity silicide contacts. Several papers showed how optimized integration of SALICIDE and source/drain process modules can lead to significant improvements in electrical device characteristics. The formation of shallow junctions by the combination of low-energy ion implantation and RTP anneal continues to be an important process for advanced devices. In this arena, the effects of transient- and oxidation-enhanced diffusion on junction depth were the focus of several papers, which analyzed the impact of the heating rate during anneal and the composition of the gas ambient. Gas purity also emerged as a key parameter in formation of advanced silicides. Rapid thermal chemical vapor deposition (RTCVD) techniques were also presented with a range of applications in the formation of MOSFET channels, ultrashallow junctions and their contacts. Novel RTCVD techniques were also considered for forming advanced MOSFETs including vertical structures.
The symposium ended with a session on new applications of RTP, which included processes outside silicon processing where RTP allows the creation of structures inaccessible through conventional thermal processing.

Mehmet C. Öztürk
Fred Roozeboom
Paul J. Timans
Sylvia H. Pas

July 1998
The organizers would like to thank everyone who participated in the meeting, especially those who gave papers, chaired sessions and reviewed manuscripts. Special thanks go to our invited speakers:

S. Radelaar
B. Peuse
M.L. Green
J.R. Hauser
E.J.H. Collart
W. Lerch
J.C. Sturm
K. Maex
R. Singh

who graciously accepted to share their expertise in their respective fields with other attendees of the symposium. Their contributions added immensely to the success of our meeting.

We sincerely express our gratitude to our panelists:

B. Triplett
J. Kuehne
M.L. Green
J.R. Hauser
D.L. Kwong

Finally, we thank our sponsors for their generous contributions:

AG Associates
Applied Materials, Inc.
ASM America
CVC Products
Dainippon Screen Mfg. Co.
Eaton Thermal Processing Systems
J.I.P.ELEC
Philips Lighting France
Philips Research
STEAG-AST Elektronik
Texas Instruments, Inc.
Textron Systems U.S.A., Inc.
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS

